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Abstract

Drought events significantly influence the regional dynamics of crop growth conditions under climate change. In Bangla-
desh, the Ganges-Jamuna-Brahmaputra Floodplains are increasingly diminished by the rising frequency and severity of
drought events, posing significant challenges to agricultural systems. This study investigates long-term drought dynamics
using multi-source satellite data and drought indices to evaluate the spatial and temporal impacts of drought alongside
climate-driven changes in water use efficiency (WUE) across the agricultural ecosystem. The Vegetation Health Index
(VHI), Standardized Precipitation Index (SPI), and Advanced Drought Response Index (ADRI) were used to evaluate
drought severity from 2002 to 2022. VHI quantifies agricultural drought, SPI measures meteorological drought using
remote sensing precipitation data, and ADRI provides an advanced drought response perspective. The SPI shows mild
droughts nearly every year, with extreme drought in 2006 and moderate-to-severe droughts in 2006, 2013, 2014, and 2018,
when experienced below-average annual precipitation of 2337 mm. Satellite-derived SPI exhibited a strong and highly
significant correlation with weather station observations (R? = 0.94, p < 0.0001). Additionally, MODIS-derived datasets
were analyzed to explore the relationship between drought dynamics and WUE. Annual VHI trends indicated mild-to-
moderate drought, with severe droughts in 2006, 2011, 2013, 2014, and 2016. Severe pre-monsoon droughts occurred in
2006, 2013, 2014, and 2018, while post-monsoon drought responses varied, benefiting Boro rice production in 2009, 2014,
and 2018. The monsoon season remained largely drought-free due to sufficient rainfall. Strong correlations between VHI
and ADRI (R? = 0.98, p< 0.001) and between SPI from remote sensing and weather station data (r = 0.94, p < 0.0001)
validated the satellite-based approach. WUE averaged 13.47 ¢ C m2 mm™!, peaking at 19.87 g C m? mm™ in 2004 and
reaching a low of 7.11 g C m? mm™ in 2002. These findings will contribute to mitigating drought impacts by enhanc-
ing agricultural strategies and refining climate change—focused agroecological zoning in Bangladesh and similar climatic
regions across continental scales.

Graphical Abstract

The graphical abstract provides an overview of the study on long-term drought impacts on agriculture in Bangladesh using
multi-source remote sensing data. The background and conceptual framework illustrate how temperature and precipitation
influence drought dynamics through ecosystem processes linked to soil moisture, evapotranspiration, photosynthesis, and
vegetation health. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Soil Moisture Active Pas-
sive (SMAP), Tropical Rainfall Measuring Mission (TRMM), and Global Precipitation Measurement (GPM) satellites,
along with weather station data, were used to derive key environmental variables such as land surface temperature (LST),
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normalized difference vegetation index (NDVI), normalized difference water index (NDWI), gross primary productiv-
ity (GPP), precipitation, soil moisture, and evapotranspiration (ET). The study employed three drought indices to explore
drought dynamics: (i) the Vegetation Health Index (VHI), which incorporates the NDVI-based Vegetation Condition Index
(VCI) and the LST-based Temperature Condition Index (TCI), (ii) the Standardized Precipitation Index (SPI) based on
precipitation, and (iii) the Advanced Drought Response Index (ADRI), integrating temperature, soil moisture, precipitation,
and vegetation parameters. Results from 2002 to 2022 reveal annual drought patterns, with spatial maps showing varying
drought intensities and bar charts illustrating trends in VHI, SPI, and ADRI. In conclusion, the strong correlation R? = 0.94;
p <0.001) between satellite-based drought indices and weather station data underscores the critical role of temperature and
precipitation in drought monitoring, highlighting the value of remote sensing for agricultural drought assessment.
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e Remote sensing technology effectively explores drought dynamics.

Drought indices evaluate the impact of climate extremes on agriculture.

Severe drought events were detected in Bangladesh in 2006, 2011, 2013, 2014, and 2016.
Remote sensing indices and weather station-measured drought are strongly correlated.
Water use efficiency increases with drought severity, reflecting ecosystem adaptation.

Keywords Ecosystem - Climate extremes - Drought dynamics - Drought monitoring - Remote sensing - Spatiotemporal

analysis - Water-use efficiency

1 Introduction

Drought is a complex environmental phenomenon charac-
terized by longer periods of unusually low precipitation,
resulting in water deficits that stress ecosystems and agri-
culture (Bhuiyan et al. 2006; Vicente-Serrano et al. 2020).
Its impacts are extensive, affecting socioeconomic, agricul-
tural, and environmental conditions and are often intensi-
fied by climate change, which is projected to increase the
frequency and intensity of drought events globally (Viau
et al. 2000; Bhuiyan et al. 2006; Jiao et al. 2016; Mada-
kumbura et al. 2019; Saharwardi et al. 2022; Mannocchi
2023; Nugraha et al. 2023; Yildiz et al. 2024). Countries in
tropical region, with both climatic and natural vulnerabili-
ties, are particularly susceptible to these effects (Brammer
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1987; Dewan 2015; Miyan 2015; Wilhite, 2015; Padrén et
al. 2020). Drought occurs when soil moisture supply falls
short of levels needed to sustain crop growth during the
regular growing season and can be classified into several
types: agricultural, meteorological, hydrological, and socio-
economic (Nagarajan 2010; Wilhite et al. 2014; Karim and
Rahman 2015; Wang et al. 2016; Kumar and Chu 2024).
Agricultural drought specifically impacts vegetation health
and productivity due to adverse climatic and hydrological
factors, influencing ecosystems and agricultural systems
and covering vegetation directly (Zhang and Jia 2013; Kohl
and Knox 2016; Hazaymeh and Hassan 2017; Guria et al.
2025). As a key component of the country’s environmen-
tal system and rural livelihoods, the agricultural ecosystem
is particularly vulnerable to drought, which disrupts crop
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cycles, reduces yields, and intensifies pressure on water and
limited land resources (Sultana et al. 2023; Mamun et al.
2024).

Seasonal drought patterns demonstrate substantial varia-
tion across the globe, primarily due to diverse inter-regional
climatic dynamics (Ahmed et al., 2020). Regional climate
systems play a crucial role in determining the onset, inten-
sity, and duration of droughts, influencing their manifes-
tation at both macro and micro scales. Fluctuations in
temperature, altered precipitation patterns, and changes in
large-scale air movement systems affect local drought con-
ditions, often intensifying or reducing their impacts depend-
ing on topographic and ecological variability (Chakraborty
& Islam, 2018). In South Asia, for example, evolving mon-
soon behavior and regional climate warming have both
contributed to heightened drought intensity and recurrence
(Rahman et al., 2022). Developing effective drought moni-
toring systems, incorporating advanced technologies (e.g.,
remote sensing, derived indices) and designing adaptive
strategies that respond to local conditions require a clear
understanding of these complex interactions.

Drought indices provide quantifiable measures of drought
conditions, simplifying this complex phenomenon into met-
rics that can be monitored over time (Al-Qinna et al. 2011;
Shah et al. 2015). For example, the Standardized Precipita-
tion Index (SPI) captures meteorological drought through
precipitation density, while the Advanced Drought Response
Index (ADRI), a multivariate index, integrates precipitation,
soil moisture, vegetation condition, and temperature data for
a more comprehensive drought assessment (Kogan 1995;
WMO 2012; Bloomfield and Marchant 2013; Singh et al.
2022). The Vegetation Health Index (VHI), widely applied
for monitoring agricultural drought, combines the Normal-
ized Difference Vegetation Index (NDVI), Vegetation Con-
dition Index (VCI), and Temperature Condition Index (TCI)
(Kogan 1995; Gao 1996; Huang et al. 2020). Indices like
the SPI, VHI, and ADRI offer essential insights for drought
monitoring and resilience-building strategies, especially in
drought-prone regions such as Bangladesh.

Over the last four decades, the NDVI has become a pri-
mary tool for detecting and monitoring vegetation, provid-
ing a measure of vegetation density and health (Carlson
and Arthur 2000; Satyanarayana et al. 2011; Hussain and
Islam 2020; Newton et al. 2024). The VCI, derived from the
NDVI, assesses the impact of weather on vegetation, while
the TCI, relying on land surface temperature (LST) data,
reflects climatic conditions (Gitelson et al. 1998; Singh et
al. 2003; Amri et al. 2011; Amalo and Hidayat 2017). VHI
integrates the VCI and TCI, offering a robust metric for
agricultural drought monitoring derived solely from remote
sensing data independent of ground-based observations
(Touma et al. 2015). The SPI, another widely used drought

index, quantifies meteorological drought by utilizing rainfall
data over varying timescales (Guttman 1999; Domenikiotis
et al. 2004; Zhao et al. 2018; Kumar et al. 2024). This study
calculated SPI values using rainfall data from the Tropical
Rainfall Measuring Mission (TRMM) satellite (Morris et al.
2007; Chen et al. 2020) and the weather station observed
rainfall data, allowing comparisons with the VHI. While the
SPI mainly reflects precipitation trends, the VHI is influ-
enced by biomass characteristics, providing a broader view
of agricultural drought impacts (Zambrano et al. 2016;
Mondol et al. 2017; Winkler et al. 2017; Satoh et al. 2021;
Harishnaika et al. 2022). However, the single-index drought
assessments like SPI often overlook key factors such as veg-
etation stress, soil moisture, and climate-induced changes
in water use efficiency (WUE). Remote sensing-based
drought indices enable a more integrated view by capturing
both meteorological and biophysical responses. This study
employs a multi-index approach—comparing SPI, VHI, and
ADRI—to provide a comprehensive assessment of drought
impacts and their consequences on WUE and ecosystems.

Tropical countries, such as Bangladesh, face increasing
vulnerability to climate-induced drought, with rising tem-
peratures and shifting rainfall patterns heightening the risks
(Shahid & Hazarika, 2010; Alamgir et al., 2015). Country's
annual average maximum temperature rose by 0.16°C from
1994 to 2013, contributing to more frequent and severe
droughts (Shahid & Behrawan, 2008; Rahaman et al.,
2016). Historical records indicate major drought events at
least once per decade, affecting over 39% of the country and
half its population (Mishra & Singh, 2010; Shahid & Haz-
arika, 2010; Alamgir et al., 2015). Severe droughts, such
as the 1978-1979 event, resulted in substantial crop losses,
with approximately 2 million metric tons of rice damaged,
underscoring the threat to food security (Brammer, 2014;
Rahman et al., 2023).

Long-term climate trends further highlight the intensi-
fying drought risk (Shamsuddin et al., 2020). Since 1950,
surface temperatures have risen by 0.74°C, with recent
observations showing a 1.16°C increase in maximum tem-
perature between 1988 and 2017 (Mishra & Singh, 2010;
Alamgir et al.,, 2015; Alam et al., 2023). Meanwhile,
monsoon rainfall has declined in key agricultural regions,
exacerbating water stress and reducing soil moisture avail-
ability (Brammer, 2014; Kamruzzaman et al., 2022). These
climatic shifts have accelerated evapotranspiration, height-
ening agricultural droughts and threatening rice produc-
tion, particularly Boro rice, which constitutes 55% of the
country’s total yield (MOF, 2010; Alam et al., 2023). Future
projections indicate a 20% decline in Boro rice production
by 2050 and up to 50% by 2070, primarily due to escalat-
ing heat stress, recurrent droughts, and intensified irrigation
demands (Alam et al., 2023; Rahman et al., 2023; Islam yet
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al., 2024). To mitigate these risks, some adaptation strat-
egies such as improved irrigation, drought-resistant crop
varieties, and sustainable water management are crucial
for safeguarding food security (Shahid & Hazarika, 2010;
Alamgir et al., 2015; Talukder et al., 2015).

Bangladesh’s low-lying floodplain, is situated on the
Himalayan River system deltas and experiences a tropical
humid climate with distinct seasonal variations (Jahangir
Alam et al. 2014; Mohsenipour et al. 2018). The country’s
climate is divided into three main seasons: pre-monsoon
(January—April), monsoon (May—August), and post-mon-
soon (September—December), with over 75% of annual rain-
fall occurring during the monsoon. The agricultural cycle is
divided into the Kharif season (May—October), which relies
on monsoon rainfall, and the Rabi season (November—
April), which depends primarily on groundwater irrigation
(Alamgir et al. 2015). Agriculture is a cornerstone of Ban-
gladesh’s economy, accounting for around one-third of the
GDP and involving approximately 60% of the labor force.
Drought affects 0.574—1.748 million hectares of rice crops
annually, posing significant socioeconomic challenges (Jah-
angir Alam et al. 2014). Projections by the Intergovernmen-
tal Panel on Climate Change (IPCC) suggest a potential
global temperature rise of up to 7 °C by 2100, which would
significantly heighten drought risks, especially in vulner-
able countries like Bangladesh (Solomon et al. 2007; ADB
2012; Ahamed et al. 2017; Rayhan and Afroz 2024). Effec-
tive drought monitoring is thus essential for sustainable
development and resilience (Sarkar et al. 2024; Hasan et al.
2024).

This study investigates a novel approach to drought
monitoring in Bangladesh by integrating several remote
sensing-based drought indices, including SPI, VHI, and
ADRI (Kogan 1995; WMO 2012; Bloomfield and March-
ant 2013; Singh et al. 2022). These indices offer a more
comprehensive, multidimensional understanding of drought
conditions, enabling a more nuanced analysis of agricul-
tural and meteorological droughts. By examining a 21-year
span (2002-2022), the study offers important insights into
the spatiotemporal patterns of droughts in Bangladesh, a
region particularly susceptible to climate change (Brammer
1987; Dewan 2015; Miyan 2015; Wilhite, 2015; Padron eta
1., 2020). Our research fills a critical gap in the literature
by incorporating advanced remote sensing techniques and
newly developed drought response indices, offering a robust
framework for informing more effective adaptation strate-
gies to mitigate future drought impacts.

The primary objective of this study is to assess drought
dynamics in Bangladesh using multi-source remote sens-
ing data. While previous studies have primarily focused on
meteorological drought (Al Mamun et al. 2024; Tahasin et
al. 2024), this research combines SPI-based meteorological
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drought with VHI-based agricultural drought and the mul-
tivariate ADRI to offer a more comprehensive view of
drought conditions. Specifically, the SPI quantifies precipi-
tation impacts, the VHI assesses drought effects on vegeta-
tion through changes in temperature and biomass, and the
ADRI captures the combined effects of precipitation, soil
moisture, vegetation health, and temperature. The research
aims to (i) quantify annual and seasonal agricultural and
meteorological drought conditions over the study period,
(il) compare agricultural and meteorological drought indices
with ADRI and WUE, and (iii) analyze the influence of key
climatic factors on drought events. Using Geographic Infor-
mation System (GIS) tools, time-series drought maps based
on NDVI, VCI, TCI, VHI, and SPI will be created to visual-
ize the progression of drought patterns across Bangladesh.

2 Materials and methods
2.1 Study Area

The study area, Bangladesh, spans from 20°34' to 26°38’
N latitude and 88°01’ to 92°41" E longitude in South Asia
(Fig. 1). Geopolitically, it is bordered by the Bay of Bengal
to the south, surrounded on three sides by Indian states, and
shares a small southeastern border with Myanmar (Fig. 1).
Bangladesh covers approximately 144,000 km? of its total
147,570 km?, predominantly comprising low-lying flood-
plains shaped by sediment deposits from the Himalayas.
This geographic setting makes the country particularly
susceptible to severe climate change impacts. Bangladesh
undergoes a tropical humid climate with moderately high
temperatures and humidity, characterized by marked vari-
ability in air pressure, wind direction, rainfall, and tem-
perature. The country has three distinct seasons: a hot
pre-monsoon summer from January to April, a rainy mon-
soon season from May to August, and a dry winter from
September to December (Hussain et al. 2017, 2021). Sea-
sonal climatic shifts and the country’s physiographic fea-
tures play a crucial role in shaping agricultural productivity
and vegetation growth, which rely on soil moisture and ele-
vation variability (Wan, 1999). With an average elevation of
28 m, the terrain rises to its highest point at 1050 m in the
southeastern hills, while much of the landscape lies within
the Ganga-Brahmaputra-Meghna floodplain, often below
10 m above sea level (Fig. 1.d).

2.2 Satellite Data

This study utilizes multidimensional satellite data from
various sources, including the Moderate Resolution Imag-
ing Spectroradiometer (MODIS), the Tropical Rainfall



Assessing the Impact of Long-Term Drought on Agriculture in Bangladesh Using Multisource Remote Sensing...

Flg. 1 Detailed Stlldy area map: (a) 75°0'0"E 90°0'0"E 105°0'0"E 120°0'0"E 90°0'0"E i 93°Q'0"E 96°Q'0"E
! Neval = Barind Tract  mmTippera Surface
The location map of Bangladesh, a) epal phutan b) Delta (Tidal)  ws Madhupur Tract

(b) Generalized Agroecological
Map of Bangladesh (United States
Geological Survey 2021); (c) Veg-
etation indices map of Bangladesh,
showing the average vegetation
condition of the previous 21 years
spanning from 2002 to 2022, and
(d) the elevation profile map of
Bangladesh. The elevation data

3000Ir0wN

ISQO.VOﬂN

China

== Coastal Plain  m=Tista Fan (Active)

Ganges (Active) mmTista Fan (Inactive)
3 =1 Mangrove

= Sylhet Foothills

= Acrai Flood Plain
Ganges (Inactive)
Meghalaya Foothills
Meghna Flood Plain

-Chittagon? Hill Tracts

== Ganges Flood Plain

== Sylhet Depression

24°0'0"N

__Old Brahmaputra

" Flood Plain

BBrahmaputra-
Jamuna Flood Plain

ik
0 75 150 N
Kilometers A

were collected from the United

21°0'0'N

States Geological Survey (USGS) Cj
shuttle radar topography mission

(SRTM) digital elevation model
data inventory (approximately

30 m resolution), available at https:
/learthexplorer.usgs.gov/; accessed
on 20 July 2024

26°00"N

24°00'N

22°00'N

NDVI Value

. Low : -0.38

Bay of Bengal

- High : 0.76
0 50 100

Kilometers

26°0'0"N

24°0'0"N

22°0'0"N

Elevation (m)
ke EE_55.0 EE20-30 Bay of Bengal
\ N Elo-5 [EW30-50

200 BE5-10 EM50-80 0 50 100
: I 10 - 15 I 80-150
N B 15 - 20 I 150 - 1100

Kilometers

88°0'0"E 90°G0"E

Measuring Mission (TRMM), the Global Precipitation
Measurement (GPM) (Skofronick-Jackson et al. 2018), and
the Soil Moisture Active Passive (SMAP). Vegetation data,
specifically the Normalized Difference Vegetation Index
(NDVI), was obtained from the MODIS Vegetation Indices
(MOD13Q1) Version 6, which provides 250 m resolution
data at 16-day intervals. Temperature data were sourced from
the MODIS Land Surface Temperature (LST) (MOD11A1)
Version 6 daily dataset with a spatial resolution of 1 km
(Wan, 1999). . Additionally, MODIS Gross Primary Produc-
tivity (GPP) and evapotranspiration (ET) data were used to
calculate water-use efficiency (WUE). GPP data were col-
lected at 8-day intervals with a 500 m resolution, while ET
data were obtained at the same interval with a spatial reso-
lution. The MODIS-based datasets were sourced from the
Goddard Space Flight Center (Maryland, USA) data site (ht
tps://modis.gsfc.nasa.gov/data/; accessed on 20 July 2024),
precipitation data (TRMM and GPM) were obtained from
the NASA global precipitation data site (https://gpm.nasa.g
ov/data/directory; accessed on 10 August 2024), and SMAP
data were downloaded from the NASA’s Jet Propulsion
Laboratory (California Institute of Technology, California,
USA) data site (https://smap.jpl.nasa.gov/data/; accessed on

88°00'E 90°0'0"E 92°0'0"E

10 August 2024). Additionally, we obtained weather station
data from the Bangladesh Meteorology Department (BMD),
for the period 2002-2022, to analyze the weather station-
based SPI across Bangladesh.

Despite the limitations of weather stations and the lack
of high-quality data, the comparison between station-based
and satellite observations shows adequate agreement in
temperature and precipitation (Table 1). The mean ground-
measured temperature and satellite-derived land surface
temperature (LST) were 30.7 °C and 27.27 °C, respectively,
reflecting expected differences between air and surface
temperature measurements. For precipitation, the mean val-
ues from weather stations and satellite observations were
204.1 mm and 194.8 mm, respectively. The standard devia-
tions for temperature and precipitation were 2.73 °C and
2.3 °C, and 206.5 mm and 184.7 mm, respectively, indi-
cating that both datasets captured temporal variability well.
These results support the use of satellite data for drought
monitoring while acknowledging limitations in spatial reso-
lution and ground station coverage.

@ Springer


https://modis.gsfc.nasa.gov/data/
https://modis.gsfc.nasa.gov/data/
https://gpm.nasa.gov/data/directory
https://gpm.nasa.gov/data/directory
https://smap.jpl.nasa.gov/data/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/

N. Hussain et al.

Table 1 Comparison of basic statistical parameters (mean, maximum, minimum, and standard deviation) between weather station measurements

and satellite observations for temperature (°C) and precipitation (mm)

Variable Source Mean Maximum Minimum Standard Deviation Correlation
(Significant)

Temperature (°C) Weather Station 30.7 355 243 2.73 0.98
Satellite 27.27 32.5 21.45 2.3 (P<0.0001)

Precipitation (mm) Weather Station 204.1 839.5 0.44 206.5 0.96
Satellite 194.8 768.9 0.72 184.7 (P<0.0001)

2.3 Data Processing Methods

We analyzed temperature, evapotranspiration (ET), pre-
cipitation, and soil moisture data to evaluate the climatic
conditions. Temperature data were obtained from the
MODIS-LST products, complemented by observed tem-
perature data from 25 weather stations of the Bangladesh
Meteorological Department (BMD). ET data were derived
from the MODIS (MOD16A2) dataset, which provides ET
values at a 500 m spatial resolution and an 8-day interval.
All satellite datasets were selected for their consistent tem-
poral coverage and proven suitability for drought and veg-
etation monitoring from 2002 to 2022, with data acquired
at 8-day or 16-day intervals depending on the product and
resampled to a common spatial resolution of 500 m to
ensure inter-product consistency with monthly and seasonal
aggregation. To enhance data quality, we excluded MODIS
scenes with more than 10% cloud cover using the quality
assurance (QA) flags included in each product. Multi-source
satellite data corrected for atmospheric effects to ensure
accurate vegetation index calculations (e.g., NDVI, NDWI)
in ArcGIS Pro (Version 3.5; Esri, Inc., California). Geomet-
ric correction was then conducted in ArcGIS Pro to align
all datasets spatially, temporally, reprojecting the MODIS
imagery from its native Sinusoidal projection to the WGS
84 coordinate reference system using bilinear interpolation
for consistency with other data sources such as SMAP soil
moisture and TRMM, GPM precipitation data.

Soil moisture data, essential for understanding drought
conditions, were captured from the SMAP mission, facili-
tated by NASA’s Hydrological Science Laboratory in col-
laboration with the USDA Foreign Agricultural Service,
covering the period from 2010 to 2020. The SMAP soil
moisture data provides direct measurements of surface
water availability, while the MODIS-derived Normalized
Difference Water Index (NDWI) serves as a spectral indi-
cator reflecting surface water and near-surface soil mois-
ture conditions (Giese et al. 2025). Our analysis revealed
a strong correlation between NDWI and SMAP soil mois-
ture (R? = 0.82, p<0.001), highlighting their shared sensi-
tivity to drought-induced variations in water availability.
This is consistent with previous findings that demonstrated
NDWT’s reliability in capturing soil moisture patterns in
various agroecological contexts (Gu et al. 2008; Hosseini
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and Saradjian 2011). NDWI has been widely used to esti-
mate soil moisture due to its responsiveness to vegetation
water content and surface wetness, making it particularly
useful when direct measurements (e.g., from SMAP) are
unavailable (Leng et al. 2017; Giese et al. 2025). Therefore,
in this study, NDWI was employed to reconstruct missing
soil moisture values prior to the SMAP record, enhancing
the continuity of drought-related analyses across the 2002—
2022 period.

Precipitation data were captured from the Tropical Rain-
fall Measuring Mission (TRMM), with missing values filled
using the Global Precipitation Measurement (GPM) dataset,
along with observed rainfall data from 25 weather stations
across Bangladesh, provided by the BMD. This comprehen-
sive dataset confirmed continuous and reliable climatic data,
supporting a robust analysis of long-term climatic trends.
The research design is illustrated in Fig. 2. To contextualize
our methodology and highlight its comparative value, we
synthesized previous major drought studies in Bangladesh
alongside the present study in Table 5, summarizing key
methods, spatial-temporal coverage, and major findings on
seasonal variability and climate change impacts.

2.4 Estimation of Agricultural Drought

Agricultural drought was assessed using the VHI, derived
from smoothed averages of the Vegetation Condition Index
(VCI) and Temperature Condition Index (TCI) for the
study area, analyzed across pre-monsoon, monsoon, and
post-monsoon periods from 2002 to 2022. The VCI was
calculated at a spatial resolution of 500 m with biweekly
smoothing, while the TCI was generated at 500 m spatial
resolution with biweekly smoothing (Kogan 1995, 2002).
VHI maps were created by integrating both VCI and TCI
data to capture agricultural drought intensity. The VCI clas-
sified agricultural drought into five categories provided in
Table 2. Based on these categories, agricultural drought
maps were produced to illustrate the spatial and temporal
distribution of drought across the study area. The values of
VCI, brightness temperature (BT), TCI, and VHI are pre-
sented as follows (Kogan 1995; Gitelson et al. 1998; Amalo
and Hidayat 2017):
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Impact of Climate
on Drought

Table 2 Categorization of different drought intensity levels using three
indicators: meteorological drought (Standardized precipitation index
— SPI), agricultural drought (Vegetation health index — VHI), and the
composite advance drought response index (ADRI)

Types of Drought ~ Meteorological ~Agricultural Advanced
Events Drought (SPI)  Drought Drought
(VHI) Response
Index (ADRI)

Extreme Drought ~ Below —2.0 Below 10, Below 10,
Severe Drought —2.1t0o—1.50 10.1-20 10.01-20
Moderate Drought <-1.51to—1.0 20.1-30 20.1-30

Mild Drought <-1.0to 0 30.1-40 30.1-40

No Drought 0 Above 40 Above 40 Above

NDVI — NDVILin
VCI =100 x NDVL... _NDVL_.. 1)

Where, VCI represents the Vegetation Condition Index, and
NDVI is the seasonal average of smoothed biweekly NDVI
values. NDVI,,,x and NDVI,;, represent the multi-year
absolute maximum and minimum NDVI, respectively.

BT = (LST x SF) — 273.15 )

Where, BT is the seasonal average of the weekly smoothed
brightness temperature (°C), BT\, ax is the multi-year abso-
lute maximum BT, and BT,,;, is the multi-year absolute
minimum BT. LST denotes land surface temperature in
Kelvin, the scaling factor (SF) is set to 0.02 for MODIS
MODO09A1 V6.

BTmax - BT

TCI=1
C 00 BTmax - BTmin

3)

| Climate (¢

\AJ g Data )
Multiple | ¢
Regression |*

Where, TCI is the Temperature Condition Index, reflects
relative changes in thermal conditions based on brightness
temperature, with values derived from MODIS MODO09A 1
V6 land surface reflectance, smoothed over 8-day intervals,
to generate LST data for the period 2002-2022.

VHI = (0.5 VCI) + (0.5 TCI) 4)

Where, VHI is Vegetation Health Index, VCI represents
the Vegetation Condition Index and TCI is the Temperature
Condition Index.

2.5 Estimation of Meteorological Drought

The SPI (McKee et al. 1993; WMO 2012) is widely recog-
nized for assessing long-term meteorological droughts, par-
ticularly those that emerge over seasonal timescales. In this
study, spatiotemporal analyses were performed using SPI to
evaluate its effectiveness as a meteorological drought index
for the region. A detailed summary of SPI values is pre-
sented in Table 2, where negative values indicate dry condi-
tions and positive values reflect wet conditions (Saharwardi
et al. 2021).

SPI is a robust metric for quantifying drought based on
precipitation anomalies. For this analysis, SPI was calcu-
lated using precipitation data from a total of 25 weather
stations operated by the Bangladesh Meteorological Depart-
ment (BMD), along with satellite-derived precipitation
datasets from TRMM and GPM. SPI values were computed
by normalizing the deviation of seasonal precipitation from
the long-term mean, applying a gamma distribution func-
tion in accordance with WMO (2012) and Bloomfield and
Marchant (2013).
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)

where Xjjis the seasonal rainfall, X, is the long-term
seasonal mean, and 0 is the standard deviation of X, .

2.6 Estimation of Advance Drought Response Index

In this study, we utilized the ADRI to analyze climatic
responses to drought conditions, integrating remote sens-
ing-based soil moisture, precipitation, vegetation health,
and temperature condition data. The ADRI is composed of
the VCI, TCI, Precipitation Condition Index (PCI), and Soil
Condition Index (SCI) (Kogan 1995; USDA-NRCS 2003;
Duet al. 2013; Zeng et al. 2023). ADRI values near 0 indi-
cate extreme drought conditions characterized by stressed
vegetation, low precipitation, and elevated temperatures,
while values approaching 100 represent normal conditions
with healthy vegetation, sufficient precipitation, and favor-
able temperatures (Kogan 1995). The VCI is derived from
remotely sensed vegetation data, while the TCI, PCI, and
SCI are calculated based on temperature, precipitation, and
soil moisture observations, respectively, as described by the
following equations (Kogan 1995; WMO 2012; Bloomfield
and Marchant 2013; Singh et al. 2022).

computational errors. VCI denotes the Vegetation Condition
Index, TCI represents the Temperature Condition Index, and
PCI stands for the Precipitation Condition Index. P is pre-
cipitation, with Pmin and Pmax as the minimum and maxi-
mum precipitation values observed over the study period.
SCI is the Soil Condition Index, where SM represents soil
moisture, with SMmin and SMmax indicating the minimum
and maximum soil moisture values during the study period.
A detailed summary of the different drought index catego-
ries and their representations is presented in Table 2.

2.7 Water-Use Efficiency (WUE)

Water-use efficiency (WUE) is a critical metric for assess-
ing ecosystem responses to drought stress across different
severities and vegetation types (Wilhite 2016; Hussain et
al. 2022). WUE measures the amount of carbon assimilated
into biomass per unit of water used by vegetation (Hatfield
and Dold 2019). At the ecosystem level, WUE is a valuable
ecological indicator, capturing the interaction between car-
bon and water balances. It is defined as the ratio of carbon
sequestration to water lost through processes like photosyn-
thesis and transpiration. In this study, we utilized Gross Pri-
mary Productivity (GPP) and evapotranspiration (ET) data

— * * 1 *
ADRI = {L VCI {C+L*(VCI+TCI+PCI+SCI+C) (TCI+PCI+SCI)}] ©)
PCI — 100* (Pmax — Pm%n) ™
(Pmax — Pmin) 1Le LST—> o
e P —_—

s (SM — SMmin) SM —= e

SCL= 100 (SMmax — SMmin) ®) ° ET — °% _°
021 A P U

Where, ADRI represents the advanced drought response 3 o '.o.'t by
index, L is the normalization factor (set to 0.25) to ensure 83 .,: .’0“
the output value falls within the expected range, and c is a & o - : S e
constant (set to 0.01) (Singh et al. 2022). The normalization R o %o '.‘.
factor L, set at 0.25, is used to scale the ADRI values so they e .;.'o‘ ¢
remain within a standardized and interpretable range, facili- % *e
tating consistent comparison across different datasets and 5r° .'.z°
time periods (Singh et al. 2022). This value helps balance e
sensitivity and stability in the index, avoiding exaggerated
fluctuations caused by extreme environmental changes. The
constant ¢, set to 0.01, serves as a small offset to prevent i ‘ | | | |
division by zero or undefined values during calculations, -1 -0.5 0 0.5 1

ensuring numerical stability especially when observed
variables approach their minimum or maximum limits.
Together, L and ccc enhance the robustness and reliability
of the ADRI by maintaining consistent output and avoiding

@ Springer

PC1 (62.62%)

Fig. 3 Principal Component Analysis (PCA) of climate data and water
balance. LST represents Land Surface Temperature, P denotes the
monthly mean precipitation, while the other variables include Soil
Moisture (SM) and Evapotranspiration (ET)
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from the MODIS dataset (Das et al. 2023; Du et al. 2024). A
comparative analysis of WUE was conducted across various
drought indices, and temporal trends in WUE were analyzed
using Eq. 9. Statistical analyses were performed to calculate
and compare correlations between drought occurrences and
WUE across different drought types.

GPP
E=——+ 9
WU BT ©)

where, WUE is water-use efficiency (g C m? mm™), GPP is
the Gross Primary Productivity (g C m~2) and ET is evapo-
transpiration retrieved from MODIS satellite data.

2.8 Statistical Analysis

A two-dimensional principal component analysis (PCA)
was performed to assess the quality and variability of cli-
matic data, using monthly mean values from 2002 to 2022
to identify dominant patterns and potential inconsistencies
(Jollife, and Cadima, 2016); Hussain et al. 2024). The PCA
results were visualized in a biplot, where the first princi-
pal component (PC1) explained 66.62% of the variance,
while the second principal component (PC2) accounted for
20.55%, together capturing 83.17% of the total variation
(Fig. 3).

To further investigate the relationships between drought
and key climatic factors, a multiple linear regression model
was used. In this model, drought indices served as the
response variable, while climatic variables such as tempera-
ture (LST), soil moisture, and precipitation acted as predic-
tors. The multiple linear regression model is represented by
Eq. (10) (Shewhart et al. 2003; Kutner et al. 2004). Addi-
tionally, the correlation coefficient for individual variables
was calculated using Eq. (11).

Yi = B0+ B1Xil + p2Xi2 + --- + B pXip + €i,

3 Results
3.1 Seasonal Climate Patterns

Meteorological variables, including temperature LST, were
analyzed using satellite data from MODIS, TRMM, GPM,
and SMAP over the period 20022022 (Figs. 4 and 5). The
monthly average LST during this period was 27.27+2.3 °C.
The highest monthly LST was observed in April 2014 at
32.5 °C, while the lowest was recorded in January 2011 at
21.44 °C. Seasonal temperature fluctuations followed typi-
cal regional patterns, with peak LST in April and May, aver-
aging 29.85+1.05 °C and 29.49+1.13 °C, respectively, and
the lowest temperatures in December (23.75+0.59 °C) and
January (22.6+£0.68 °C) (Fig. 4a).

In 2022, the yearly average soil moisture for Bangladesh
was 0.1520 kg/m?, which is above the long-term average of
0.1358 kg/m?, reflecting wetter conditions (Fig. 4.b). The
soil moisture pattern shows significant seasonality, with
the lowest levels recorded in January (0.0609 kg/m?) and
December (0.0584 kg/m?), marking the dry season. Moisture
levels increase in April (0.0976 kg/m?) as the pre-monsoon
rains start and peak in July (0.2155 kg/m?), reflecting the
monsoon’s peak rainfall. The post-monsoon months show
a decline in soil moisture, with September at 0.2119 kg/m?
and further drops in October (0.1814 kg/m?) and Novem-
ber (0.1085 kg/m?). This seasonal variation emphasizes the
significant role of the monsoon in replenishing soil mois-
ture and highlights the need for effective water manage-
ment strategies during dry months (Islam et al. 2024). Dry
years, such as 2006 and 2018, show declining soil moisture,
indicating potential challenges for agriculture and ecosys-
tem stability. Integrating satellite-based climate monitoring
with localized weather data can improve drought and flood

i=1--,n

(10)

R? = 2iz1(y1 = 1)’

11
> —a)” o

Where 7 is the number of observations, yi is the ith response,
is the response variable, and 1, 2, ..., Xil, Xi2, ..., Xip are
the predictor variables. O is the intercept, and 1, 2, ..., p1,
B2, ..., Pp are the coefficients that indicate the influence
of each predictor on . represents the error term, capturing
the difference between observed and predicted values. The
model estimates these coefficients to minimize the error
across all observations.

forecasting, aiding sustainable land and water management
in Bangladesh.

Evapotranspiration (ET) patterns, derived from
MODIS data, revealed the monthly average ET rate of
2.12£0.81 mm d !, with a peak of 2.35 mm d ! in 2020
and a low of 1.93 mm d! in 2012. ET showed distinct sea-
sonal patterns, with October reaching the highest monthly
ET at 3.33 mm d !, attributed to high post-monsoon radia-
tive energy and sufficient soil moisture. In contrast, the low-
est ET levels were in January (1.15 mm d ') and February
(1.11 mm d "), coinciding with reduced daylight and radia-
tive energy (Fig. 5c). Surface-level soil moisture across the
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study area averaged 0.135+0.06 kg m 2 or 13.5% per land
unit, with peak moisture levels of 15.7% in 2017 and a min-
imum of 12% in 2006. Seasonal variations were evident,
with soil moisture reaching maximum levels from July to
September (0.215, 0.214, and 0.212 kg m ™2, respectively),
while the lowest levels occurred in December (0.05 kg m™2)
and January (0.06 kg m2), aligning closely with precipita-
tion trends (Fig. 4.b).

The study area’s long-term average annual precipitation
was 2337 mm, with notable dry years (2006, 2009, 2013,
2014, and 2018) characterized by precipitation anomalies
below 10% of the average, and wet years (2002, 2004,
2007, 2017, and 2022) exhibiting anomalies above 10%

3000

——2002 - - - 2009
——2003 - - - 2010
——2004 - - - 2011
25001 o2

€ ——2006 ~ - - 2013 -

E DAy LV R—

§ 2000 == =2008 e

s

=

[53

5

@ 1500

o

2

©

=)

£ 1000

O

500

Jul Aug Sep Oct Nov Dec

Fig. 5 Monthly cumulative precipitation (P) from 2002 to 2022. The
yearly precipitation was calculated from the Tropical Rainfall Mea-
suring Mission (TRMM) and the Global Precipitation Measurement
(GPM) dataset composited monthly. The height precipitation was
recorded in 2002 (2646 mm), 2004 (2761 mm), 2007 (2731 mm), 2017
(2823 mm), and 2022 (2825 mm); conversely, the lowest precipitation
was recorded in 2006 (2062 mm), 2009 (2101 mm), 2013 (2098 mm),
2014 (1980 mm), and 2018 (1986 mm)
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(Fig. 5). The highest annual precipitation occurred in 2017
(2823 mm) and 2022 (2825 mm), while the lowest was in
2014 (1980 mm) and 2018 (1886 mm). The monsoon season
(May—August) was the predominant contributor, account-
ing for 67% of the annual rainfall, with the remaining 33%
distributed annually. July had the highest average monthly
rainfall at 464 mm, while December (7 mm) and January
(10 mm) were the driest months.

3.2 Agricultural Drought and Regional Variability

The annual calculation of the VHI from 2002 to 2022
revealed consistent mild-to-moderate drought conditions
in Bangladesh, with severe droughts recorded in 2006,
2011, 2013, 2014, and predominantly in 2016 (Fig. 6). In
2016 alone, extreme to severe drought conditions affected
approximately 13,848 km>—about 13% of the country’s
total agricultural land—posing serious threats to crop pro-
duction and rural livelihoods. Geomorphologically vul-
nerable regions such as the Char (riverbanks or islands)
areas along riverbanks were significantly impacted due to
their sandy, well-drained soil and limited irrigation infra-
structure, exacerbating water retention issues. Similarly,
the northeastern Haor (wetland) regions faced pronounced
drought during dry seasons (December to January), further
intensifying their vulnerability due to their dependence on
irrigation for rice cultivation (Baishakhy et al. 2023). The
northwest and southeast zones of Bangladesh emerged as
hotspots for agricultural drought intensity. The northwest-
ern Himalayan piedmont zone and southeastern Tertiary hill
regions are particularly susceptible due to climatic factors
and reduced river flow. Annual droughts in northern areas
result from diminished river discharge in the Tista, Ganges,
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Fig.6 Spatial distribution of
annual agricultural drought

from 2002 to 2022. The maps
present the Vegetation Health
Index (VHI) classified by five
agricultural drought levels of
<10, 10-20, 20-30, 3040, and
>40, considered extreme, severe,
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moderate, mild, and no drought
intensity, respectively (Zeng et
al. 2023)

Vegetation Health Index (VHI)

B Extreme drought (< 10)
I Severe drought (10 - 20)
[ 1 Moderate drough (20 - 30)
1 mild drought (30 - 40)
B No drought (> 40)

Kilometers

0 150 300 600

and Brahmaputra rivers, often linked to upstream water
dams. These regions, locally referred to as “Monga areas”,
experience seasonal food insecurity and severe agricultural
disruptions due to recurrent drought conditions.

The results highlight the persistent susceptibility of Ban-
gladesh to agricultural drought, which is driven by climatic,
geomorphic, and hydrological factors. Haor and Char areas
are particularly exposed to seasonal drought and flooding,
illustrating a dual vulnerability that complicates agricultural
planning and water resource management for government
authorities (Rahman 2018; Sarkar et al. 2024). The reli-
ance on irrigation in the northeastern wetlands intensifies
the impact of water scarcity during dry periods, while the
northwest’s dependence on reduced river flows exacerbates
drought severity in the Monga areas(Rahman, 2018); Das
et al. 2023).

The interchange of upstream water management, geo-
morphic soil properties, and local climatic conditions cre-
ates a complex mixture of drought vulnerability across
Bangladesh. Effective mitigation strategies should improve
irrigation infrastructure, enhance water retention in sandy
soils, and adopt sustainable water-sharing practices in trans-
boundary river basins (Alamgir et al. 2015; Al Mamun et al.
2024). Targeted interventions in the northwest and southeast
regions are critical to alleviating the impacts of recurring
droughts and ensuring food security in these highly affected
zones.

Elevated LST during dry months further intensifies agri-
cultural drought by accelerating evapotranspiration and
reducing soil moisture reserves. These thermal dynamics
are especially detrimental in already water-stressed regions.
The Temperature Condition Index (TCI), derived from sat-
ellite-based brightness temperatures, provides a valuable
metric for quantifying this stress by comparing current LST
to historical extremes. Low TCI values reflect higher ther-
mal stress and vegetation vulnerability, while higher TCI
values suggest more favorable growing conditions. In this
study, MODIS LST data (2002-2022) demonstrated a mod-
erate but statistically significant relationship with drought
intensity (R? = 0.45, p<0.0001), confirming TCI’s utility
as a thermal proxy for vegetation health. Integrating such
indices with climate projections can enhance the predictive
capacity of drought monitoring systems, supporting effec-
tive agricultural planning under future climate uncertainty.

3.3 Spatiotemporal Meteorological Drought

Rainfall data from TRMM and GPM satellites were ana-
lyzed using geospatial and geostatistical methods to inves-
tigate the spatiotemporal variability of meteorological
drought across Bangladesh from 2002 to 2022 (Fig. 7). The
SPI highlighted mild drought events occurring almost annu-
ally, with extreme meteorological drought localized in 2006.
Moderate-to-severe droughts were observed in 2006, 2013,
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Fig.7 Spatial distribution of
meteorological drought in
Bangladesh. The maps show the
Standardized Precipitation Index
(SPI) classified by five categories
of meteorological drought level:
(1)<—=2.0, (i) <—1.5, (iii)<— 1.0,
(iv)<0, and (v)>0, considered as

, 2007

extreme, severe, moderate, mild,
and no drought intensity, respec-
tively (Gupta et al. 2022)
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2014, and 2018, coinciding with annual precipitation defi-
cits compared to the average of 2337 mm. Precipitation lev-
els dropped to 2062 mm (2006), 2098 mm (2013), 1980 mm
(2014), and 1986 mm (2018), exacerbating drought severity
during these years. Spatially, droughts were concentrated in
the northwest to northeast regions, where higher elevations
and Char areas with poorly water-retentive soils heightened
vulnerability. Seasonal precipitation distribution further
illustrates the dominance of the monsoon season, with July
contributing significantly to annual rainfall, while dry peri-
ods in December and January underscored the challenge of
water scarcity during non-monsoon months (Shamsuddin et
al. 2020).

The findings emphasize the critical role of spatiotempo-
ral variability in shaping meteorological drought patterns
across Bangladesh. The dominance of droughts in the north-
west and northeast regions highlights the influence of geo-
morphic features, such as higher elevations and sandy soils
in Char areas, which exacerbate water scarcity. The support
of monsoon rainfall for stocking up water resources accen-
tuates the vulnerability of these regions during years with
below-average precipitation, particularly during dry sea-
sons. The seasonal imbalance in rainfall distribution, with
significant rainfall concentrated in July and prolonged dry
periods during winter months, creates challenges for sus-
tainable water management and agricultural planning (Al
Shoumik et al. 2023; Sarkar et al. 2024). Addressing these

@ Springer

vulnerabilities requires integrating seasonal precipitation
forecasts, improving irrigation infrastructure, and adopt-
ing drought-resilient agricultural practices to mitigate the
adverse impacts of meteorological drought in the context of
climate variability and change (Alamgir et al. 2015; (Rah-
man, 2018); Al Mamun et al. 2024).

3.4 Seasonal Assessment of Agricultural and
Meteorological Drought Using Advanced Indices

The seasonal patterns of agricultural and meteorological
droughts in the study area were analyzed using the ADRI,
VHI, SPI, and WUE (Fig. 8). The pre-monsoon seasons
(January to April) exhibited severe drought conditions, with
the VHI and ADRI indicating significant stress in 2006,
2009, 2014, and 2019. The SPI also showed moderate
drought during these periods, reflecting the transition from
dry to extremely hot conditions with minimal precipita-
tion. Conversely, the post-monsoon seasons (September to
December) demonstrated more varied responses. While the
VHI and ADRI highlighted favorable conditions in 2012,
2017, and 2021 due to sufficient water availability for win-
ter Boro rice cultivation, the SPI indicated mild drought
during this period, as precipitation levels were 64% lower
than the monsoon average. The monsoon seasons (May to
August) were mostly drought-free due to favorable rainfall
and climatic conditions. The correlation between the VHI
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Fig.8 Time-series comparison of
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Fig. 9 (a) Correlation heatmap of climate variables, drought indices,
and water balance. LST represents Land Surface Temperature, while
the other variables include Soil Moisture (SM), Standardized Pre-
cipitation Index (SPI), Vegetation Health Index (VHI), Agricultural
Drought Response Index (ADRI), Evapotranspiration (ET), and Water

and ADRI (R?*=0.98, p<0.001) demonstrated consistency
in capturing agricultural drought dynamics, while ADRI’s
NDVI-based approach highlighted the influence of vegeta-
tion health on drought assessments.

The variable interaction heatmap (Fig. 9.a) reveals
expected and non-intuitive relationships among drought
drivers. Strong positive correlations between soil moisture
and vegetation health (R? = 0.85), and between precipitation
and vegetation health (R?=0.79), affirm that water availabil-
ity directly supports crop growth. Interestingly, the negative

Use Efficiency (WUE). (b) Relationship between the remotely sensed
SPI and the observed SPI (weather station-based) using data from the
Bangladesh Meteorological Department (BMD). The analysis reveals
a strong correlation, with an R? value of 0.94 and a highly significant
p-value (<0.0001)

correlation between precipitation and evapotranspiration
(R? = —-0.44) challenges common assumptions. During
heavy rainfall, lower temperatures and reduced solar radia-
tion may suppress evapotranspiration, despite water avail-
ability. This finding has implications for climate projections
where increased rainfall may not equate to increased mois-
ture stress relief, especially if thermal dynamics counteract
expected gains.

Another notable result is the negative relationship
between vegetation health and water use efficiency (WUE;
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R?=-0.81). This suggests that under drought stress, vegeta-
tion becomes more water-efficient, possibly as a physiologi-
cal response to conserve moisture. It also raises questions
about the role of plant type, nutrient availability, and man-
agement practices in moderating these outcomes—fac-
tors that must be integrated into future drought models to
enhance prediction accuracy.

The integration of SPI from weather station observations
(Fig. 9.b) with satellite-derived SPI shows a strong agree-
ment (R? = 0.94, p<0.0001), confirming the robustness
of remote sensing approaches for drought tracking. This
strengthens confidence in deploying these tools for early
warning systems, particularly in data-scarce regions.

Importantly, the seasonal drought trends identified in this
study align with climate change projections for Bangladesh,
which predict increased dry season warming, inconsistent
rainfall patterns, and longer drought durations. These trends
underscore the urgent need for seasonally adaptive and
region-specific drought mitigation strategies. Integrating
multi-index approaches like SPI, VHI, and ADRI allows for
more nuanced monitoring and informed decision-making.
Future resilience planning should prioritize improved irriga-
tion infrastructure, adoption of drought-resilient crop variet-
ies, and integration of planning tools to reduce agricultural
vulnerability under projected climate stress (Ahmed et al.
2023; Alam et al. 2023; Fattah et al. 2023).

3.5 Water-Use Efficiency and Drought Adaptation in
Agricultural Systems

WUE was derived from MODIS-based GPP and ET data,
revealing an average WUE of 13.47 ¢ C m > mm ' over
the study period. The highest WUE of 19.87 g C m > mm!
occurred during the pre-monsoon period of 2004, while the
lowest, 7.11 g C m 2 mm', was observed in the monsoon
season of 2002. This variability highlights the agricultural
system’s adaptive response to seasonal water availability.
During drought periods, particularly in pre-monsoon sea-
sons, WUE increased as ecosystems optimized their water
usage under scarcity (McKee et al. 1993; Srivastava et al.
2024). Significant negative correlations were identified
between WUE and drought indices, with R? values of 0.68,
0.85, and 0.66 for the VHI, SPI, and ADRI, respectively,
suggesting that higher drought severity is accompanied by
enhanced water efficiency.

The outcomes demonstrate the critical role of WUE as a
measure of agricultural adaptation to water scarcity. During
drought conditions, the observed increase in WUE reflects
the ecosystem’s capacity to optimize water use, mitigat-
ing the impacts of reduced water availability on produc-
tivity. The strong negative correlations between WUE and
drought indices (VHI, SPI, and ADRI) further highlight
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this adaptive response, where agricultural systems adjust to
intensify water-use efficiency as drought severity increases
(Hatfield and Dold 2019; Prodhan et al. 2020; Rahman et al.
2023; Mamun et al. 2024). This relationship underscores the
importance of WUE in drought resilience and provides valu-
able insights for sustainable water management practices.

These results emphasize the need for targeted interven-
tions, such as drought-resistant crops and precision irrigation
techniques, to support agricultural systems in maintaining
productivity under water-limited conditions. By integrating
WUE into drought monitoring and management strategies,
policymakers and agricultural stakeholders (small-scale and
large-scale farmers) can enhance the resilience of farming
practices to the challenges posed by climate variability and
water stress (Srivastava et al. 2024; Morepje et al. 2024).

Moreover, the observed WUE dynamics have signifi-
cant implications for ecosystem productivity and resource
sustainability. Higher WUE during dry periods reflects an
increased ratio of carbon uptake to water loss, which is essen-
tial for maintaining yields in Bangladesh’s monsoon-depen-
dent agricultural ecosystems. The balance between GPP and
ET—especially during transitional periods—is influenced
by both climatic drivers (e.g., solar radiation, temperature)
and soil moisture conditions, all of which show clear sea-
sonal variability. During the monsoon, abundant rainfall
and radiation promote higher ET and photosynthetic rates,
while in winter, reduced solar input and lower temperatures
constrain ET and plant activity. Importantly, the interaction
between soil moisture, precipitation, and LST reinforces the
importance of integrated climate—water—carbon modeling
to guide drought adaptation. Soil moisture patterns closely
follow precipitation regimes, governing both ET and veg-
etation stress levels. These seasonal couplings indicate that
enhancing WUE through informed irrigation practices and
crop selection can significantly mitigate the adverse impacts
of climate-induced drought on agriculture.

In summary, the strong responsiveness of WUE to sea-
sonal drought patterns highlights its potential as both an
indicator and a tool for adaptation. Embedding WUE into
national drought monitoring systems will support farmers
and policymakers in developing targeted interventions to
improve agricultural resilience, water efficiency, and long-
term food security under increasing climate stress (Ahmed
et al. 2024; Srivastava et al. 2024; Morepje et al. 2024; Yang
et al. 2024; Rambal et al. 2025).

3.6 Climatic Drivers on Drought Indices and
Assessment

To assess the reliability and consistency of various drought
indices and the use of water efficiency, we evaluated their
association with the NDVI, a widely accepted proxy for
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Table 3 The correlations between the different drought indices and
Climatic variables. The strong correlation coefficient was observed
with the p-values of <0.0001. The key indicators of the multivariable
linear regression model include the number of observations (N), error
degrees of freedom (DF), root mean square error (RMSE), and correla-
tion coefficient (R?), which quantify the contribution of variance in the
dependent variable explained by the independent variables

Index N DF RMSE R?

VHI 252 248 5.93 0.86
SPI 252 248 0.18 0.97
ADRI 252 248 6.98 0.63

vegetation health and drought stress (Fig. 10). All corre-
lations were statistically significant (P<0.0001), indicat-
ing strong and meaningful relationships with vegetation
conditions.

Among the indices, the ADRI showed the highest cor-
relation with NDVI (R?>=0.83), highlighting its strong sen-
sitivity to vegetation stress. The SPI also demonstrated a
strong correlation (R?=0.70), confirming its effectiveness
in capturing precipitation-driven vegetation responses. The
VHI showed a moderate correlation (R>=0.57), likely influ-
enced by its combined use of thermal and vegetation data.

Water Use Efficiency (WUE), while moderately corre-
lated with NDVI (R? = 0.39), reflects longer-term ecosys-
tem productivity and physiological adaptation rather than
immediate vegetation stress. These results suggest that
ADRI and SPI are most suitable for near-real-time moni-
toring of agricultural drought in regions where vegetation
rapidly responds to water availability.

The multivariable linear regression analysis of meteo-
rological variables, including surface temperature, soil
moisture, and precipitation, was performed to evaluate
their impact on drought conditions over the study period
(Table 3). This model captures the relationship between
climatic variables and drought indices, incorporating key
indicators such as the number of observations (N), degrees
of freedom (DF), root mean square error (RMSE), and coef-
ficient of determination (R?), which provide insights into
the variance contributed by both dependent and independent
variables (Shewhart et al. 2003; Kutner et al. 2004). The
results indicate strong correlations between drought indi-
ces and climatic variables, with statistically significant low
p-values (<0.0001).

The VHI exhibited a high correlation (R>=0.86), under-
scoring its sensitivity to vegetation health and drought
conditions. Approximately 86% of the VHI variance is
explained by climatic factors, with a standard error of 5.93
and a highly significant (p<0.0001). Similarly, the SPI
demonstrated the highest correlation (R>=0.97), reflect-
ing a strong relationship between precipitation and drought
severity, with about 97% of the SPI variance explained by
climatic conditions. The ADRI showed a moderately sig-
nificant correlation (R2=0.63;p<0.0001), with 63% of its
variance attributed to climatic factors and a standard error
of 6.98.

Table 4 provides the model results examining associations
between drought indices (VHI, SPI, and ADRI) and climatic
variables (LST, soil moisture, and precipitation). For the
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Table 4 Multivariable linear regression analysis of drought indices
and specific Climatic factors for each drought index (VHI, SPI, and
ADRI) and Climatic variable (LST, soil moisture, and precipitation)
by statistical indicators including intercept, estimate, standard error,
t-statistics, and p-value

VHI

Estimate  Standard Error  tStat p Value
Intercept 146.68 4.54 32.28 <0.0001
LST -3.19 0.17 —-18.62 <0.0001
Soil Moisture ~ —8.71 11.41 -0.76 0.44
Precipitation ~ 0.06 0.001 -14.37 <0.0001
SP1

Estimate Standard Error  tStat pValue
Intercept —0.90 0.13 —6.52 <0.0001
LST —0.004  0.005 —0.76983  0.44
Soil Moisture ~ —0.19 0.34 —0.55134  0.58
Precipitation ~ 0.005 0.0001 45.53 <0.0001
ADRI

Estimate Standard Error  tStat p Value
Intercept 25.27 5.35 4.72 <0.0001
LST 0.41 0.20 2.05 0.04
Soil Moisture ~ 48.16 13.44 3.58 0.0004
Precipitation ~ —0.06 0.004 —13.85 <0.0001

VHI, the intercept was 146.68, with coefficients of —3.19 for
LST, —8.71 for soil moisture, and 0.06 for precipitation. The
SPI intercepted —0.90, with coefficients of —0.004 for LST,
—0.19 for soil moisture, and 0.005 for precipitation. For the
ADRLI, the intercept was 25.27, with coefficients of 0.41 for
LST, 48.16 for soil moisture, and —0.06 for precipitation.
The VHI demonstrated a strong negative association with
LST (estimate=—3.19, p<0.0001), indicating that higher
temperatures contribute to lower vegetation health. A mod-
erate positive association was found between the VHI and
precipitation (estimate=0.06, p<0.0001), suggesting that
increased precipitation supports vegetation growth, mitigat-
ing drought impacts. Soil moisture, however, showed a non-
significant association with the VHI (p=0.44), indicating
that other factors may influence vegetation health beyond
soil moisture levels. The SPI exhibited a positive correlation
with precipitation (estimate=0.005, p<0.0001), linking
higher precipitation with reduced drought severity. Weak
associations were found between the SPI and both LST and
soil moisture, affirming precipitation’s primary role in SPI
dynamics. The ADRI displayed moderate associations with
LST (estimate=0.41, p=0.04) and a strong relationship
with soil moisture (estimate=48.16, p=0.0004), suggesting
that higher temperatures and soil moisture variations play a
role in drought severity. Additionally, the correlation heat-
map illustrates the relationships among key environmental
factors, including LST, precipitation, soil moisture, water
and energy fluxes (ET, WUE), and various drought indices
(Fig. 9.a).

@ Springer

The multivariable regression analysis reveals intricate
relationships between climatic factors and drought indices,
emphasizing the strong explanatory power of the SPI (R* =
0.97) and VHI (R? = 0.86) in modeling drought dynamics.
These findings highlight the effectiveness of multivariable
regression models in capturing drought patterns, offering
valuable insights into the primary drivers of drought. This
understanding aids in the development of better prepared-
ness and adaptation strategies, ultimately helping to reduce
drought impacts on socioeconomic and environmental
systems and enhancing resilience in drought-prone areas
(Sarkar et al. 2024; Hasan et al. 2024).

The correlation plot (Fig. 9.b) emphasizes a strong agree-
ment between remote sensing-derived SPI and weather
station-based SPI, with an R? value of 0.94 (P<0.0001),
indicating that satellite-based estimates effectively capture
precipitation anomalies. This relationship suggests that
remote sensing data can reliably substitute in-situ observa-
tions, reducing reliance on sparse weather station networks
for drought monitoring. However, slight deviations from
the regression line may be attributed to localized precipi-
tation variations or sensor limitations in detecting small-
scale heterogeneity. Despite these minor discrepancies,
the high correlation coefficient reinforces the potential of
remote sensing for providing continuous spatial and tempo-
ral drought monitoring, positioning it as a valuable tool for
regional climate analysis and water resource management.

The regression analysis further demonstrates that precip-
itation is the dominant factor influencing drought variabil-
ity, shown by its strong correlation with the SPI and VHI.
Surface temperature also plays a significant role in vegeta-
tion health, highlighting the importance of adaptive strate-
gies to mitigate the impacts of heat stress on ecosystems.
These results underline the value of multivariable models
in identifying the primary climatic drivers of drought, sup-
porting the formulation of targeted water management and
agricultural resilience strategies (Hussain et al. 2021; Das et
al. 2023; Hasan et al. 2024).

4 Discussion
4.1 The Climatic Condition

The seasonal climate patterns and soil variability in Bangla-
desh highlight the complex interactions between tempera-
ture, precipitation, ET, and soil moisture (Fattah e al., 2023).
LST peak during the monsoon transition in April and May,
with cooler conditions in December and January, reflecting
monsoonal dynamics (Ahmed et al. 2023; Dastour et al.
2025). Precipitation follows a distinct pattern, with alternat-
ing wet and dry years, and the monsoon accounts for 67%
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Table 5 Comparative overview of major drought studies in bangla-
desh, including the present study, summarizing methods, study peri-
ods, and key findings relevant to spatial-temporal drought patterns,
seasonal variability, and climate change impacts

Study Reference ~ Study Method/ Key Findings
Period Data
Used
Assessment  Shahid and 1960— SPI/ Identified increas-
of drought Behrawan 2002  Rainfall ing drought
using SPI (2008) Data frequency
in northwest
Bangladesh
Spatiotempo- Shahid 1961- SPI/GIS, Spatial variability
ral drought (2010) 1992 Rainfall in drought; west-
analysis Records ern and northern
regions are most
vulnerable
Meteorologi- Alamgiret 1961- SPI/ Droughts for pre-
cal drought al. (2015) 2010  Rainfall monsoon in north-
pattern Data west, monsoon
in northwest and
winter in west.
Hydro- Rahamanet 1964— Trend Trans-boundary
climatolog-  al. (2016) 2013 Analy-  water flow
ical drought sis/ limits surface
analysis Climate water, triggering
Data drought.
Spatiotempo- Kamruzza- 1980— SPI, Temperature
ral drought man et al. 2018  SPEV/ affect precipita-
analysis (2022) Rainfall tion; drought
Data intensity rises in
northwest.
Drought Das et al. 1990- GIS/ NDVI effective
monitoring (2023) 2020 NDVI, for agricultural
NDWI, drought; north-
LULC  west regions are
vulnerable
Climate Rahmanet 1991- Neural Meteorological
change and al. (2023) 2020  Net- data and Neural
drought work/ Network pre-
Meteo-  dicted sea-
rological sonal drought
Data susceptibility.
Meteorologi- Sadiqetal. 2010— NDVI,  Spatial variability
cal drought (2023) 2019 NDWI, in drought; west-
assessment GIS/ ern and northern
MODIS  regions are most
Data vulnerable.
Agricultural  Mamunet  2000—- VHI/ Northern region,
Droughts al. (2024) 2020 NDVI, especially in
LST winter, is more
drought prone.
Climate Present 2002—- SPI, Droughts are
Change and  Study ( 2022 VHI, becoming more
Drought Hussain ADRI, severe with
linkage etal., al., WUE/  changing climate;
2025)) Satel- monsoon vari-
lite and  ability key driver
Station  for drought
climate resilience.
data

of the annual rainfall. Years with significant anomalies,
like 2014 and 2018 (drier), and 2017 and 2022 (wetter),
impact agriculture, water availability, and flooding risks.
These findings underscore the importance of adaptive water
resource management to cope with climate variability (Rah-
man 2018; Sarkar et al. 2024).

ET and soil moisture trends further illustrate the region’s
climatic sensitivity. ET rates peak in October, driven by
post-monsoon energy and soil moisture, while they dip in
January and February, reflecting seasonal energy constraints.
Soil moisture closely tracks precipitation trends, peaking
during the monsoon and declining during dry months (Han
et al. 2021; Sharma et al. 2022). These patterns emphasize
the need for adaptive land and water management strategies
to mitigate drought impacts, prevent waterlogging, and opti-
mize irrigation scheduling (Selvaraju, and Baas, 2007); Dey
et al. 2017). The findings provide a foundation for designing
resilient agricultural practices and water resource manage-
ment plans, which are critical for maintaining ecosystem
stability in the face of climate variability (Igbal et al. 2025).

4.2 Comparative Analysis of Different Drought
Dynamics

This study expands upon existing research on drought
dynamics in Bangladesh by confirming the seasonal and
spatial variability of droughts, particularly in the Char and
northwestern regions, where pre-monsoon and dry winter
conditions contribute to heightened drought risk (Ahmed
et al. 2021). Consistent with earlier studies (e.g., Ahmed
2006; Mojid 2020; Islam and Nursey-Bray 2017), our find-
ings validate the role of monsoon variability, limited soil
moisture retention, and upstream water regulation in deter-
mining regional drought severity. By integrating remote
sensing-derived indices such as VHI, SPI, ADRI, and WUE,
this study advances previous work by contributing a more
spatially detailed and ecologically responsive assessment
of drought impacts. Our results not only align with station-
based observations but also provide new insights into adap-
tive ecosystem responses and multi-seasonal drought risks.
The comparative analysis presented in Table 5 highlights
methodological improvements and supports the integration
of satellite-based tools into climate-resilient agriculture eco-
system planning and localized drought monitoring.
Agricultural drought, caused by soil moisture deficits and
vegetation stress, is most severe in regions such as Char
and Haor, where poor water retention and dependence on
seasonal rainfall exacerbate the impact of droughts. Mete-
orological drought, driven by rainfall shortages, follows
broader climatic trends, with the northwestern and north-
eastern regions experiencing frequent dry spells due to
reduced river discharge. Notably, the Monga region in the
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northwest suffers from severe food insecurity during pro-
longed droughts, exacerbated by upstream water regulation
affecting the Teesta and Brahmaputra rivers (Selvaraju and
Baas 2007; Aziz et al. 2022). This study found a strong cor-
relation between remotely sensed and weather station-based
SPI, with an R? value of 0.94 (»p<0.0001), confirming the
reliability of satellite-based drought monitoring across Ban-
gladesh (Prodhan et al. 2020; Sadiq et al. 2023).

Seasonal drought patterns across Bangladesh reveal
critical vulnerabilities, especially during the pre-monsoon
period (January—April). This period is marked by extreme
water scarcity, high temperatures, and declining soil mois-
ture, particularly in rain-fed agricultural zones (Sultana et
al. 2023; Mamun et al. 2024). The northeastern Haor wet-
lands are especially vulnerable to early-season water short-
ages, disrupting Boro rice cultivation. During the monsoon
season (May—August), rainfall replenishes water resources
and alleviates drought stress, but floodplain areas often face
excessive rainfall and flash floods, creating additional chal-
lenges for agriculture. In the post-monsoon period (Sep-
tember—December), while initial water availability supports
crop growth, declining rainfall leads to localized drought
stress, particularly in the sandy, well-drained soils of Char
lands (Dey et al. 2017; Islam et al. 2020; Sultana et al. 2023;
Rahman et al. 2025). These seasonal patterns highlight
the need for region-specific water management strategies,
including improved irrigation infrastructure, sustainable
transboundary water agreements, and strategic reservoir
management to better manage seasonal fluctuations and
mitigate the effects of drought (Islam et al., 2017).

The analysis emphasizes the significant impact of sea-
sonal patterns on agricultural and meteorological drought
dynamics in Bangladesh. The pre-monsoon period stands
out as the most vulnerable, with severe drought condi-
tions due to minimal precipitation and high temperatures,
severely affecting agricultural ecosystems and water avail-
ability (Sultana et al. 2023; Sarkar et al. 2024). On the other
hand, the monsoon season plays a crucial role in replenish-
ing developing the drought conditions by water availability
and supporting crop growth. However, drought events have
also been observed during the monsoon season in India,
with studies highlighting evapotranspiration as a key fac-
tor, especially across large areas with diverse ecosystems
(Kumar et al. 2013). This study identified significant annual
findings based on SPI in 2006, 2013, 2014, and 2018, indi-
cating moderate to severe drought conditions (Fig. 7). These
results are consistent with previously published studies as
summarized in Table 5 (Rahman 2018; Sadiq et al. 2023;
Sarkar et al. 2024). However, the post-monsoon period
presents a mixed scenario, with sufficient water initially
supporting agricultural activities, but declining precipita-
tion leading to mild drought stress, as indicated by the SPI.
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Furthermore, WUE plays a critical role in building agricul-
tural resilience. MODIS-based GPP and ET data reveal an
average WUE of 13.47 g C m—2 mm— 1, with the highest
recorded during the pre-monsoon drought of 2004 (19.87 g
C m—2 mm—1) and the lowest during the monsoon of
2002 (7.11 g C m—2 mm—1). Strong negative correlations
were found between WUE and drought indices (R? = 0.68
for VHI, 0.85 for SPI, and 0.66 for ADRI), showing that as
drought severity increases, crops adjust their water use to
maintain productivity. Strengthening early warning systems,
improving irrigation infrastructure, adopting drought-resis-
tant crops, and implementing adaptive water management
strategies are essential for mitigating drought impacts and
ensuring long-term food security and climate resilience in
Bangladesh (Islam et al., 2017; Sarkar et al. 2024).

The observed patterns—frequent mild droughts inter-
spersed with episodic moderate-to-severe events—are
consistent with long-term shifts in temperature and rain-
fall regimes. Projected climate scenarios for Bangla-
desh indicate rising average land surface temperatures
(27.27+2.3 °C), with summer extremes exceeding 32.5 °C,
and a trend toward erratic monsoon behavior, prolonged dry
spells, and shifting rainfall distributions. In severe drought
years like 2014, total annual rainfall dropped well below the
long-term average (2337 mm to 1980 mm), compounding
moisture stress due to increased evapotranspiration rates.

These climate-driven changes are particularly harmful to
regions like the northwest, where poor water retention exac-
erbates drought impacts. Declining precipitation and rising
heat will likely increase drought frequency, intensity, and
duration—placing significant strain on ecosystem services,
agricultural productivity, and food security (Ashik-Ur-
Rahman et al., 2024; Rahman et al. 2024). These findings
emphasize the urgent need for adaptive drought risk man-
agement that incorporates both current observations and
future climate projections.

4.3 Implications for Ecosystem and Resource
Management

This study highlights the significant role of seasonal cli-
mate patterns and soil variability in shaping Bangladesh’s
ecosystems and agricultural systems. Climatic factors such
as temperature, precipitation, evapotranspiration, and soil
moisture show considerable seasonal and inter-annual vari-
ations. Peak temperatures occur in April and May, with the
monsoon contributing to 67% of annual rainfall, creating
marked seasonal imbalances in water availability. Addi-
tionally, evapotranspiration rates peak after the monsoon,
intensifying pressure on water resources during dry periods
(Sultana et al. 2023). Extreme weather events, such as the
dry years of 2006, 2014 and 2018 and the wet years of 2017
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and 2022, underscore Bangladesh’s vulnerability to climate
extremes, calling for adaptive, climate-resilient strategies
in agriculture and water management (Prodhan et al. 2020;
Sadiq et al. 2023).

The strong correlation between soil moisture and precipi-
tation highlights the critical need for adaptive land and water
management strategies. Soil moisture levels peak during the
monsoon season but decline sharply during the dry months,
emphasizing the necessity of efficient irrigation, water con-
servation, and measures to prevent waterlogging (Prodhan et
al. 2020; Sultana et al. 2023). These findings are crucial for
shaping national policies that promote resilient agricultural
practices and sustainable water management. Although pre-
cision agriculture offers an effective approach to optimizing
resource use, its adoption remains limited, especially among
small- and medium-scale farmers due to technological and
financial constraints. At the local and community levels,
agricultural officers play a crucial role in mitigating these
challenges by guiding farmers in crop selection, irrigation
scheduling, and the adoption of drought-resistant practices
(Miheretu and Yimer 2017). However, traditional weather
station-based drought monitoring remains inadequate at
finer spatial scales due to the limited availability of local-
ized meteorological data. This study demonstrates that
remote sensing-based tools can address this gap by provid-
ing spatially continuous data, enabling more effective deci-
sion-making for local small- and medium-scale agricultural
practices. Additionally, existing agroecological assessments
require updates at finer scales to account for variations in
land use and climate dynamics.

While neighboring countries like India have adopted
integrated drought monitoring systems (Asrat and Simane
2018; Shah and Mishra 2020), many still rely on broad scale
agroecological zoning that lacks the granularity needed for
effective local interventions. Bangladesh must move toward
finer-resolution agroecological assessments, incorporating
both climate variability and land use changes to enable more
effective, place-based adaptation. This includes adapting
crop calendars, water budgets, and agro-advisory systems
to specific micro-regions, particularly those at high risk of
seasonal drought intensification.

The integration of remote sensing data with agroeco-
logical assessments can provide deeper insights into how
local agricultural systems respond to climate variability and
drought patterns. Enhancing agroecological zoning at finer
spatial resolutions will enable the development of region-
specific strategies, ultimately strengthening climate adap-
tation efforts, promoting sustainable agricultural practices,
and preserving critical ecosystems across Bangladesh’s
diverse landscapes (Nayak et al. 2019).

The findings of this study provide valuable insight for
formulating drought-resilient and ecologically informed

policies in Bangladesh. The documented spatial and sea-
sonal variability in drought patterns highlights the urgent
need for regionally tailored adaptation strategies, particu-
larly in highly vulnerable areas such as the Char, Haor,
and northwestern regions. Policymakers should prioritize
investment in localized irrigation systems, scalable early
warning tools based on satellite-derived drought indica-
tors, and finer-scale agroecological zoning that incorporates
vegetation health, soil moisture, and socioeconomic vul-
nerability. Integrating high resolution climate data such as
LST, NDVI, and WUE into planning frameworks will be
essential for promoting sustainable crop planning, resource
allocation, and risk reduction. These data-driven strategies
not only improve real-time drought monitoring but also sup-
port nutritional stability, agricultural sustainability, and eco-
system resilience in the face of growing climate extremes.
Most critically, empowering marginal and smallholder
farmers through access to climate services, drought-resil-
ient technologies, and informed agricultural extension can
reduce their vulnerability to environmental disruptions and
contribute to broader economic stability and food security
across Bangladesh’s climate-sensitive and emerging econ-
omy (Nayak et al. 2019; Morepje et al. 2024).

4.4 Limitations

Despite the strengths of this study, several limitations must
be acknowledged. While satellite-derived indices provide
valuable spatial and temporal coverage for drought monitor-
ing, the coarse resolution of some remote sensing datasets
may limit the detection of localized drought events, particu-
larly in heterogeneous landscapes with varying topography,
land use, and microclimates. Additionally, issues such as
cloud cover, sensor calibration errors, and data discontinui-
ties can introduce uncertainties that affect the precision of
drought severity assessments (Kogan, 1990). Another key
limitation lies in the sparse distribution and inconsistent
temporal coverage of ground-based weather station data
in Bangladesh, which can reduce the robustness of satel-
lite data validation. This is particularly problematic in cli-
matically diverse zones, where localized meteorological
observations are critical for calibrating remote sensing
outputs. Moreover, validation efforts in this study focused
primarily on temperature and precipitation; future research
should expand this scope to include land surface tempera-
ture (LST), NDVI, and other vegetation-based indices,
which can suggest deeper insight into ecological responses
to drought stress.

To address these limitations, future studies should pur-
sue higher-resolution remote sensing datasets, integrate
multi-source data fusion techniques, and strengthen ground
validation networks. Enhanced agroecological zoning and
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more comprehensive datasets will improve the detection of
spatial-temporal drought variability and enable the develop-
ment of more targeted, climate-resilient resource manage-
ment strategies designed to regional needs.

5 Conclusions

This study provides a comprehensive assessment of agricul-
tural and meteorological drought dynamics in Bangladesh
from 2002 to 2022, employing advanced satellite data and
analytical techniques. By integrating key drought indices
(VHI, SPI, and ADRI) with climatic variables, this research
highlights the spatiotemporal evolution of drought severity
and its significant impacts on agricultural productivity. The
findings reveal that mild-to-moderate drought conditions
persisted throughout the study period, with severe events
notably concentrated in 2006, 2011, 2013, 2014, and 2016.
Vulnerable regions, such as Char areas, low-elevated Haor
and the north-west region were disproportionately affected
due to unfavorable soil properties and limited irrigation
infrastructure. Additionally, the study reveals that increas-
ing drought severity, driven by climate variability, is closely
linked to enhanced WUE as crops adapt to water-limited
conditions. These findings highlight the critical role of WUE
trends in shaping agricultural resilience and underscore the
need to integrate drought and climate change considerations
into sustainable water and crop management strategies.

The multivariate regression analysis underscores the
critical role of surface temperature, soil moisture, and pre-
cipitation in shaping drought patterns, with the SPI and
VHI demonstrating high explanatory power (R>=0.97 and
R%=0.86, respectively). Seasonal analysis further highlights
the importance of considering seasonal rainfall variability
in drought preparedness, as dry pre-monsoon periods exac-
erbate water scarcity while monsoon seasons typically miti-
gate drought impacts. The integrated assessment method
proposed in this study offers a valuable framework for
monitoring drought in Bangladesh and developing region-
specific mitigation strategies, which can be adapted for use
in other regions facing similar climatic and agricultural
challenges.

This study encountered challenges in achieving consis-
tent spatial and temporal resolution across satellite data
sources, partly due to the limited availability of ground
station data for validation. While remote sensing facili-
tated continuous monitoring of key variables such as soil
moisture, rainfall, and temperature, the inherent differences
in sensor characteristics and resolution created difficulties
in seamlessly integrating the data. Despite these limita-
tions, this study underscores the potential of multisource
remote sensing to fill data gaps and complement traditional
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ground-based measurements, although further refinement
in data calibration and integration methods is necessary to
improve accuracy and reliability.

Future research should integrate climate change projec-
tions to assess how shifting conditions influence drought
severity, frequency, and distribution, providing insights into
long-term trends and guiding adaptation strategies. Addi-
tionally, enhancing agroecological zoning at finer spatial
scales with remote sensing data will improve understand-
ing of land use shifts and their impact on local agricultural
systems and drought resilience. Furthermore, combining
advanced remote sensing techniques with machine learning
models could improve drought prediction and management.
This research is crucial for influencing national policies
focused on resilient agriculture and sustainable water man-
agement. By providing local farmers with expert guidance,
they can make informed decisions on crop selection, irriga-
tion, and drought-resistant strategies.

Importantly, integrating satellite-derived drought indi-
ces and WUE into national adaptation frameworks can
strengthen localized decision-making, empower marginal
farmers, and contribute to long-term agricultural sustain-
ability and economic resilience across climate-exposed
Bangladesh economy. The study offers valuable insights
into climatic drivers and seasonal drought patterns, forming
the basis for evidence-based policies, strategic water plan-
ning, and sustainable agricultural practices. These findings
enable policymakers and researchers to enhance drought
assessment models and implement targeted interventions,
fostering resilience in Bangladesh and other drought-prone
regions globally.
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