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Abstract
Drought events significantly influence the regional dynamics of crop growth conditions under climate change. In Bangla-
desh, the Ganges-Jamuna-Brahmaputra Floodplains are increasingly diminished by the rising frequency and severity of 
drought events, posing significant challenges to agricultural systems. This study investigates long-term drought dynamics 
using multi-source satellite data and drought indices to evaluate the spatial and temporal impacts of drought alongside 
climate-driven changes in water use efficiency (WUE) across the agricultural ecosystem. The Vegetation Health Index 
(VHI), Standardized Precipitation Index (SPI), and Advanced Drought Response Index (ADRI) were used to evaluate 
drought severity from 2002 to 2022. VHI quantifies agricultural drought, SPI measures meteorological drought using 
remote sensing precipitation data, and ADRI provides an advanced drought response perspective. The SPI shows mild 
droughts nearly every year, with extreme drought in 2006 and moderate-to-severe droughts in 2006, 2013, 2014, and 2018, 
when experienced below-average annual precipitation of 2337 mm. Satellite-derived SPI exhibited a strong and highly 
significant correlation with weather station observations (R² = 0.94, p < 0.0001). Additionally, MODIS-derived datasets 
were analyzed to explore the relationship between drought dynamics and WUE. Annual VHI trends indicated mild-to-
moderate drought, with severe droughts in 2006, 2011, 2013, 2014, and 2016. Severe pre-monsoon droughts occurred in 
2006, 2013, 2014, and 2018, while post-monsoon drought responses varied, benefiting Boro rice production in 2009, 2014, 
and 2018. The monsoon season remained largely drought-free due to sufficient rainfall. Strong correlations between VHI 
and ADRI (R² = 0.98, p< 0.001) and between SPI from remote sensing and weather station data (r = 0.94, p < 0.0001) 
validated the satellite-based approach. WUE averaged 13.47 g C m⁻² mm⁻¹, peaking at 19.87 g C m⁻² mm⁻¹ in 2004 and 
reaching a low of 7.11 g C m⁻² mm⁻¹ in 2002. These findings will contribute to mitigating drought impacts by enhanc-
ing agricultural strategies and refining climate change–focused agroecological zoning in Bangladesh and similar climatic 
regions across continental scales.

Graphical Abstract
The graphical abstract provides an overview of the study on long-term drought impacts on agriculture in Bangladesh using 
multi-source remote sensing data. The background and conceptual framework illustrate how temperature and precipitation 
influence drought dynamics through ecosystem processes linked to soil moisture, evapotranspiration, photosynthesis, and 
vegetation health. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Soil Moisture Active Pas-
sive (SMAP), Tropical Rainfall Measuring Mission (TRMM), and Global Precipitation Measurement (GPM) satellites, 
along with weather station data, were used to derive key environmental variables such as land surface temperature (LST), 
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1  Introduction

Drought is a complex environmental phenomenon charac-
terized by longer periods of unusually low precipitation, 
resulting in water deficits that stress ecosystems and agri-
culture (Bhuiyan et al. 2006; Vicente-Serrano et al. 2020). 
Its impacts are extensive, affecting socioeconomic, agricul-
tural, and environmental conditions and are often intensi-
fied by climate change, which is projected to increase the 
frequency and intensity of drought events globally (Viau 
et al. 2000; Bhuiyan et al. 2006; Jiao et al. 2016; Mada-
kumbura et al. 2019; Saharwardi et al. 2022; Mannocchi 
2023; Nugraha et al. 2023; Yildiz et al. 2024). Countries in 
tropical region, with both climatic and natural vulnerabili-
ties, are particularly susceptible to these effects (Brammer 

1987; Dewan 2015; Miyan 2015; Wilhite, 2015; Padrón et 
al. 2020). Drought occurs when soil moisture supply falls 
short of levels needed to sustain crop growth during the 
regular growing season and can be classified into several 
types: agricultural, meteorological, hydrological, and socio-
economic (Nagarajan 2010; Wilhite et al. 2014; Karim and 
Rahman 2015; Wang et al. 2016; Kumar and Chu 2024). 
Agricultural drought specifically impacts vegetation health 
and productivity due to adverse climatic and hydrological 
factors, influencing ecosystems and agricultural systems 
and covering vegetation directly (Zhang and Jia 2013; Kohl 
and Knox 2016; Hazaymeh and Hassan 2017; Guria et al. 
2025). As a key component of the country’s environmen-
tal system and rural livelihoods, the agricultural ecosystem 
is particularly vulnerable to drought, which disrupts crop 

normalized difference vegetation index (NDVI), normalized difference water index (NDWI), gross primary productiv-
ity (GPP), precipitation, soil moisture, and evapotranspiration (ET). The study employed three drought indices to explore 
drought dynamics: (i) the Vegetation Health Index (VHI), which incorporates the NDVI-based Vegetation Condition Index 
(VCI) and the LST-based Temperature Condition Index (TCI), (ii) the Standardized Precipitation Index (SPI) based on 
precipitation, and (iii) the Advanced Drought Response Index (ADRI), integrating temperature, soil moisture, precipitation, 
and vegetation parameters. Results from 2002 to 2022 reveal annual drought patterns, with spatial maps showing varying 
drought intensities and bar charts illustrating trends in VHI, SPI, and ADRI. In conclusion, the strong correlation R² = 0.94; 
p < 0.001) between satellite-based drought indices and weather station data underscores the critical role of temperature and 
precipitation in drought monitoring, highlighting the value of remote sensing for agricultural drought assessment.

Highlights
	●  Remote sensing technology effectively explores drought dynamics.
	●  Drought indices evaluate the impact of climate extremes on agriculture.
	●  Severe drought events were detected in Bangladesh in 2006, 2011, 2013, 2014, and 2016.
	●  Remote sensing indices and weather station-measured drought are strongly correlated.
	●  Water use efficiency increases with drought severity, reflecting ecosystem adaptation.

Keywords  Ecosystem · Climate extremes · Drought dynamics · Drought monitoring · Remote sensing · Spatiotemporal 
analysis · Water-use efficiency
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cycles, reduces yields, and intensifies pressure on water and 
limited land resources (Sultana et al. 2023; Mamun et al. 
2024).

Seasonal drought patterns demonstrate substantial varia-
tion across the globe, primarily due to diverse inter-regional 
climatic dynamics (Ahmed et al., 2020). Regional climate 
systems play a crucial role in determining the onset, inten-
sity, and duration of droughts, influencing their manifes-
tation at both macro and micro scales. Fluctuations in 
temperature, altered precipitation patterns, and changes in 
large-scale air movement systems affect local drought con-
ditions, often intensifying or reducing their impacts depend-
ing on topographic and ecological variability (Chakraborty 
& Islam, 2018). In South Asia, for example, evolving mon-
soon behavior and regional climate warming have both 
contributed to heightened drought intensity and recurrence 
(Rahman et al., 2022). Developing effective drought moni-
toring systems, incorporating advanced technologies (e.g., 
remote sensing, derived indices) and designing adaptive 
strategies that respond to local conditions require a clear 
understanding of these complex interactions.

Drought indices provide quantifiable measures of drought 
conditions, simplifying this complex phenomenon into met-
rics that can be monitored over time (Al-Qinna et al. 2011; 
Shah et al. 2015). For example, the Standardized Precipita-
tion Index (SPI) captures meteorological drought through 
precipitation density, while the Advanced Drought Response 
Index (ADRI), a multivariate index, integrates precipitation, 
soil moisture, vegetation condition, and temperature data for 
a more comprehensive drought assessment (Kogan 1995; 
WMO 2012; Bloomfield and Marchant 2013; Singh et al. 
2022). The Vegetation Health Index (VHI), widely applied 
for monitoring agricultural drought, combines the Normal-
ized Difference Vegetation Index (NDVI), Vegetation Con-
dition Index (VCI), and Temperature Condition Index (TCI) 
(Kogan 1995; Gao 1996; Huang et al. 2020). Indices like 
the SPI, VHI, and ADRI offer essential insights for drought 
monitoring and resilience-building strategies, especially in 
drought-prone regions such as Bangladesh.

Over the last four decades, the NDVI has become a pri-
mary tool for detecting and monitoring vegetation, provid-
ing a measure of vegetation density and health (Carlson 
and Arthur 2000; Satyanarayana et al. 2011; Hussain and 
Islam 2020; Newton et al. 2024). The VCI, derived from the 
NDVI, assesses the impact of weather on vegetation, while 
the TCI, relying on land surface temperature (LST) data, 
reflects climatic conditions (Gitelson et al. 1998; Singh et 
al. 2003; Amri et al. 2011; Amalo and Hidayat 2017). VHI 
integrates the VCI and TCI, offering a robust metric for 
agricultural drought monitoring derived solely from remote 
sensing data independent of ground-based observations 
(Touma et al. 2015). The SPI, another widely used drought 

index, quantifies meteorological drought by utilizing rainfall 
data over varying timescales (Guttman 1999; Domenikiotis 
et al. 2004; Zhao et al. 2018; Kumar et al. 2024). This study 
calculated SPI values using rainfall data from the Tropical 
Rainfall Measuring Mission (TRMM) satellite (Morris et al. 
2007; Chen et al. 2020) and the weather station observed 
rainfall data, allowing comparisons with the VHI. While the 
SPI mainly reflects precipitation trends, the VHI is influ-
enced by biomass characteristics, providing a broader view 
of agricultural drought impacts (Zambrano et al. 2016; 
Mondol et al. 2017; Winkler et al. 2017; Satoh et al. 2021; 
Harishnaika et al. 2022). However, the single-index drought 
assessments like SPI often overlook key factors such as veg-
etation stress, soil moisture, and climate-induced changes 
in water use efficiency (WUE). Remote sensing-based 
drought indices enable a more integrated view by capturing 
both meteorological and biophysical responses. This study 
employs a multi-index approach—comparing SPI, VHI, and 
ADRI—to provide a comprehensive assessment of drought 
impacts and their consequences on WUE and ecosystems.

Tropical countries, such as Bangladesh, face increasing 
vulnerability to climate-induced drought, with rising tem-
peratures and shifting rainfall patterns heightening the risks 
(Shahid & Hazarika, 2010; Alamgir et al., 2015). Country's 
annual average maximum temperature rose by 0.16°C from 
1994 to 2013, contributing to more frequent and severe 
droughts (Shahid & Behrawan, 2008; Rahaman et al., 
2016). Historical records indicate major drought events at 
least once per decade, affecting over 39% of the country and 
half its population (Mishra & Singh, 2010; Shahid & Haz-
arika, 2010; Alamgir et al., 2015). Severe droughts, such 
as the 1978–1979 event, resulted in substantial crop losses, 
with approximately 2 million metric tons of rice damaged, 
underscoring the threat to food security (Brammer, 2014; 
Rahman et al., 2023).

Long-term climate trends further highlight the intensi-
fying drought risk (Shamsuddin et al., 2020). Since 1950, 
surface temperatures have risen by 0.74°C, with recent 
observations showing a 1.16°C increase in maximum tem-
perature between 1988 and 2017 (Mishra & Singh, 2010; 
Alamgir et al., 2015; Alam et al., 2023). Meanwhile, 
monsoon rainfall has declined in key agricultural regions, 
exacerbating water stress and reducing soil moisture avail-
ability (Brammer, 2014; Kamruzzaman et al., 2022). These 
climatic shifts have accelerated evapotranspiration, height-
ening agricultural droughts and threatening rice produc-
tion, particularly Boro rice, which constitutes 55% of the 
country’s total yield (MOF, 2010; Alam et al., 2023). Future 
projections indicate a 20% decline in Boro rice production 
by 2050 and up to 50% by 2070, primarily due to escalat-
ing heat stress, recurrent droughts, and intensified irrigation 
demands (Alam et al., 2023; Rahman et al., 2023; Islam yet 
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drought with VHI-based agricultural drought and the mul-
tivariate ADRI to offer a more comprehensive view of 
drought conditions. Specifically, the SPI quantifies precipi-
tation impacts, the VHI assesses drought effects on vegeta-
tion through changes in temperature and biomass, and the 
ADRI captures the combined effects of precipitation, soil 
moisture, vegetation health, and temperature. The research 
aims to (i) quantify annual and seasonal agricultural and 
meteorological drought conditions over the study period, 
(ii) compare agricultural and meteorological drought indices 
with ADRI and WUE, and (iii) analyze the influence of key 
climatic factors on drought events. Using Geographic Infor-
mation System (GIS) tools, time-series drought maps based 
on NDVI, VCI, TCI, VHI, and SPI will be created to visual-
ize the progression of drought patterns across Bangladesh.

2  Materials and methods

2.1  Study Area

The study area, Bangladesh, spans from 20°34′ to 26°38′ 
N latitude and 88°01′ to 92°41′ E longitude in South Asia 
(Fig. 1). Geopolitically, it is bordered by the Bay of Bengal 
to the south, surrounded on three sides by Indian states, and 
shares a small southeastern border with Myanmar (Fig. 1). 
Bangladesh covers approximately 144,000 km2 of its total 
147,570 km2, predominantly comprising low-lying flood-
plains shaped by sediment deposits from the Himalayas. 
This geographic setting makes the country particularly 
susceptible to severe climate change impacts. Bangladesh 
undergoes a tropical humid climate with moderately high 
temperatures and humidity, characterized by marked vari-
ability in air pressure, wind direction, rainfall, and tem-
perature. The country has three distinct seasons: a hot 
pre-monsoon summer from January to April, a rainy mon-
soon season from May to August, and a dry winter from 
September to December (Hussain et al. 2017, 2021). Sea-
sonal climatic shifts and the country’s physiographic fea-
tures play a crucial role in shaping agricultural productivity 
and vegetation growth, which rely on soil moisture and ele-
vation variability (Wan, 1999). With an average elevation of 
28 m, the terrain rises to its highest point at 1050 m in the 
southeastern hills, while much of the landscape lies within 
the Ganga-Brahmaputra-Meghna floodplain, often below 
10 m above sea level (Fig. 1.d).

2.2  Satellite Data

This study utilizes multidimensional satellite data from 
various sources, including the Moderate Resolution Imag-
ing Spectroradiometer (MODIS), the Tropical Rainfall 

al., 2024). To mitigate these risks, some adaptation strat-
egies such as improved irrigation, drought-resistant crop 
varieties, and sustainable water management are crucial 
for safeguarding food security (Shahid & Hazarika, 2010; 
Alamgir et al., 2015; Talukder et al., 2015).

Bangladesh’s low-lying floodplain, is situated on the 
Himalayan River system deltas and experiences a tropical 
humid climate with distinct seasonal variations (Jahangir 
Alam et al. 2014; Mohsenipour et al. 2018). The country’s 
climate is divided into three main seasons: pre-monsoon 
(January–April), monsoon (May–August), and post-mon-
soon (September–December), with over 75% of annual rain-
fall occurring during the monsoon. The agricultural cycle is 
divided into the Kharif season (May–October), which relies 
on monsoon rainfall, and the Rabi season (November–
April), which depends primarily on groundwater irrigation 
(Alamgir et al. 2015). Agriculture is a cornerstone of Ban-
gladesh’s economy, accounting for around one-third of the 
GDP and involving approximately 60% of the labor force. 
Drought affects 0.574–1.748 million hectares of rice crops 
annually, posing significant socioeconomic challenges (Jah-
angir Alam et al. 2014). Projections by the Intergovernmen-
tal Panel on Climate Change (IPCC) suggest a potential 
global temperature rise of up to 7 °C by 2100, which would 
significantly heighten drought risks, especially in vulner-
able countries like Bangladesh (Solomon et al. 2007; ADB 
2012; Ahamed et al. 2017; Rayhan and Afroz 2024). Effec-
tive drought monitoring is thus essential for sustainable 
development and resilience (Sarkar et al. 2024; Hasan et al. 
2024).

This study investigates a novel approach to drought 
monitoring in Bangladesh by integrating several remote 
sensing-based drought indices, including SPI, VHI, and 
ADRI (Kogan 1995; WMO 2012; Bloomfield and March-
ant 2013; Singh et al. 2022). These indices offer a more 
comprehensive, multidimensional understanding of drought 
conditions, enabling a more nuanced analysis of agricul-
tural and meteorological droughts. By examining a 21-year 
span (2002–2022), the study offers important insights into 
the spatiotemporal patterns of droughts in Bangladesh, a 
region particularly susceptible to climate change (Brammer 
1987; Dewan 2015; Miyan 2015; Wilhite, 2015; Padrón eta 
l., 2020). Our research fills a critical gap in the literature 
by incorporating advanced remote sensing techniques and 
newly developed drought response indices, offering a robust 
framework for informing more effective adaptation strate-
gies to mitigate future drought impacts.

The primary objective of this study is to assess drought 
dynamics in Bangladesh using multi-source remote sens-
ing data. While previous studies have primarily focused on 
meteorological drought (Al Mamun et al. 2024; Tahasin et 
al. 2024), this research combines SPI-based meteorological 
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10 August 2024). Additionally, we obtained weather station 
data from the Bangladesh Meteorology Department (BMD), 
for the period 2002–2022, to analyze the weather station-
based SPI across Bangladesh.

Despite the limitations of weather stations and the lack 
of high-quality data, the comparison between station-based 
and satellite observations shows adequate agreement in 
temperature and precipitation (Table 1). The mean ground-
measured temperature and satellite-derived land surface 
temperature (LST) were 30.7 °C and 27.27 °C, respectively, 
reflecting expected differences between air and surface 
temperature measurements. For precipitation, the mean val-
ues from weather stations and satellite observations were 
204.1 mm and 194.8 mm, respectively. The standard devia-
tions for temperature and precipitation were 2.73  °C and 
2.3  °C, and 206.5  mm and 184.7  mm, respectively, indi-
cating that both datasets captured temporal variability well. 
These results support the use of satellite data for drought 
monitoring while acknowledging limitations in spatial reso-
lution and ground station coverage.

Measuring Mission (TRMM), the Global Precipitation 
Measurement (GPM) (Skofronick-Jackson et al. 2018), and 
the Soil Moisture Active Passive (SMAP). Vegetation data, 
specifically the Normalized Difference Vegetation Index 
(NDVI), was obtained from the MODIS Vegetation Indices 
(MOD13Q1) Version 6, which provides 250  m resolution 
data at 16-day intervals. Temperature data were sourced from 
the MODIS Land Surface Temperature (LST) (MOD11A1) 
Version 6 daily dataset with a spatial resolution of 1  km 
(Wan, 1999). . Additionally, MODIS Gross Primary Produc-
tivity (GPP) and evapotranspiration (ET) data were used to 
calculate water-use efficiency (WUE). GPP data were col-
lected at 8-day intervals with a 500 m resolution, while ET 
data were obtained at the same interval with a spatial reso-
lution. The MODIS-based datasets were sourced from the 
Goddard Space Flight Center (Maryland, USA) data site (​h​t​
t​p​​s​:​/​​/​m​o​d​​i​s​​.​g​s​​f​c​.​n​​a​s​a​​.​g​o​​v​/​d​a​t​a​/; accessed on 20 July 2024), 
precipitation data (TRMM and GPM) were obtained from 
the NASA global precipitation data site (​h​t​t​p​​s​:​/​​/​g​p​m​​.​n​​a​s​a​​.​g​
o​v​​/​d​a​​t​a​/​​d​i​r​e​c​t​o​r​y; accessed on 10 August 2024), and SMAP 
data were downloaded from the NASA’s Jet Propulsion 
Laboratory (California Institute of Technology, California, 
USA) data site (​h​t​t​p​​s​:​/​​/​s​m​a​​p​.​​j​p​l​​.​n​a​s​​a​.​g​​o​v​/​​d​a​t​a​/; accessed on 

Fig. 1  Detailed study area map: (a) 
The location map of Bangladesh, 
(b) Generalized Agroecological 
Map of Bangladesh (United States 
Geological Survey 2021); (c) Veg-
etation indices map of Bangladesh, 
showing the average vegetation 
condition of the previous 21 years 
spanning from 2002 to 2022, and 
(d) the elevation profile map of 
Bangladesh. The elevation data 
were collected from the United 
States Geological Survey (USGS) 
shuttle radar topography mission 
(SRTM) digital elevation model 
data inventory (approximately 
30 m resolution), available at ​h​t​t​p​s​:​​​
/​​/​e​a​r​t​h​​e​x​p​​l​o​r​e​​​r​.​u​​s​g​​​s​.​g​o​v​/; accessed 
on 20 July 2024
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and Saradjian 2011). NDWI has been widely used to esti-
mate soil moisture due to its responsiveness to vegetation 
water content and surface wetness, making it particularly 
useful when direct measurements (e.g., from SMAP) are 
unavailable (Leng et al. 2017; Giese et al. 2025). Therefore, 
in this study, NDWI was employed to reconstruct missing 
soil moisture values prior to the SMAP record, enhancing 
the continuity of drought-related analyses across the 2002–
2022 period.

Precipitation data were captured from the Tropical Rain-
fall Measuring Mission (TRMM), with missing values filled 
using the Global Precipitation Measurement (GPM) dataset, 
along with observed rainfall data from 25 weather stations 
across Bangladesh, provided by the BMD. This comprehen-
sive dataset confirmed continuous and reliable climatic data, 
supporting a robust analysis of long-term climatic trends. 
The research design is illustrated in Fig. 2. To contextualize 
our methodology and highlight its comparative value, we 
synthesized previous major drought studies in Bangladesh 
alongside the present study in Table  5, summarizing key 
methods, spatial-temporal coverage, and major findings on 
seasonal variability and climate change impacts.

2.4  Estimation of Agricultural Drought

Agricultural drought was assessed using the VHI, derived 
from smoothed averages of the Vegetation Condition Index 
(VCI) and Temperature Condition Index (TCI) for the 
study area, analyzed across pre-monsoon, monsoon, and 
post-monsoon periods from 2002 to 2022. The VCI was 
calculated at a spatial resolution of 500  m with biweekly 
smoothing, while the TCI was generated at 500 m spatial 
resolution with biweekly smoothing (Kogan 1995, 2002). 
VHI maps were created by integrating both VCI and TCI 
data to capture agricultural drought intensity. The VCI clas-
sified agricultural drought into five categories provided in 
Table  2. Based on these categories, agricultural drought 
maps were produced to illustrate the spatial and temporal 
distribution of drought across the study area. The values of 
VCI, brightness temperature (BT), TCI, and VHI are pre-
sented as follows (Kogan 1995; Gitelson et al. 1998; Amalo 
and Hidayat 2017):

2.3  Data Processing Methods

We analyzed temperature, evapotranspiration (ET), pre-
cipitation, and soil moisture data to evaluate the climatic 
conditions. Temperature data were obtained from the 
MODIS-LST products, complemented by observed tem-
perature data from 25 weather stations of the Bangladesh 
Meteorological Department (BMD). ET data were derived 
from the MODIS (MOD16A2) dataset, which provides ET 
values at a 500 m spatial resolution and an 8-day interval. 
All satellite datasets were selected for their consistent tem-
poral coverage and proven suitability for drought and veg-
etation monitoring from 2002 to 2022, with data acquired 
at 8-day or 16-day intervals depending on the product and 
resampled to a common spatial resolution of 500  m to 
ensure inter-product consistency with monthly and seasonal 
aggregation. To enhance data quality, we excluded MODIS 
scenes with more than 10% cloud cover using the quality 
assurance (QA) flags included in each product. Multi-source 
satellite data corrected for atmospheric effects to ensure 
accurate vegetation index calculations (e.g., NDVI, NDWI) 
in ArcGIS Pro (Version 3.5; Esri, Inc., California). Geomet-
ric correction was then conducted in ArcGIS Pro to align 
all datasets spatially, temporally, reprojecting the MODIS 
imagery from its native Sinusoidal projection to the WGS 
84 coordinate reference system using bilinear interpolation 
for consistency with other data sources such as SMAP soil 
moisture and TRMM, GPM precipitation data.

Soil moisture data, essential for understanding drought 
conditions, were captured from the SMAP mission, facili-
tated by NASA’s Hydrological Science Laboratory in col-
laboration with the USDA Foreign Agricultural Service, 
covering the period from 2010 to 2020. The SMAP soil 
moisture data provides direct measurements of surface 
water availability, while the MODIS-derived Normalized 
Difference Water Index (NDWI) serves as a spectral indi-
cator reflecting surface water and near-surface soil mois-
ture conditions (Giese et al. 2025). Our analysis revealed 
a strong correlation between NDWI and SMAP soil mois-
ture (R² = 0.82, p < 0.001), highlighting their shared sensi-
tivity to drought-induced variations in water availability. 
This is consistent with previous findings that demonstrated 
NDWI’s reliability in capturing soil moisture patterns in 
various agroecological contexts (Gu et al. 2008; Hosseini 

Table 1  Comparison of basic statistical parameters (mean, maximum, minimum, and standard deviation) between weather station measurements 
and satellite observations for temperature (°C) and precipitation (mm)
Variable Source Mean Maximum Minimum Standard Deviation Correlation

(Significant)
Temperature (°C) Weather Station 30.7 35.5 24.3 2.73 0.98

(P < 0.0001)Satellite 27.27 32.5 21.45 2.3
Precipitation (mm) Weather Station 204.1 839.5 0.44 206.5 0.96

(P < 0.0001)Satellite 194.8 768.9 0.72 184.7
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Where, TCI is the Temperature Condition Index, reflects 
relative changes in thermal conditions based on brightness 
temperature, with values derived from MODIS MOD09A1 
V6 land surface reflectance, smoothed over 8-day intervals, 
to generate LST data for the period 2002–2022.

VHI = (0.5 • VCI) + (0.5 • TCI)� (4)

Where, VHI is Vegetation Health Index, VCI represents 
the Vegetation Condition Index and TCI is the Temperature 
Condition Index.

2.5  Estimation of Meteorological Drought

The SPI (McKee et al. 1993; WMO 2012) is widely recog-
nized for assessing long-term meteorological droughts, par-
ticularly those that emerge over seasonal timescales. In this 
study, spatiotemporal analyses were performed using SPI to 
evaluate its effectiveness as a meteorological drought index 
for the region. A detailed summary of SPI values is pre-
sented in Table 2, where negative values indicate dry condi-
tions and positive values reflect wet conditions (Saharwardi 
et al. 2021).

SPI is a robust metric for quantifying drought based on 
precipitation anomalies. For this analysis, SPI was calcu-
lated using precipitation data from a total of 25 weather 
stations operated by the Bangladesh Meteorological Depart-
ment (BMD), along with satellite-derived precipitation 
datasets from TRMM and GPM. SPI values were computed 
by normalizing the deviation of seasonal precipitation from 
the long-term mean, applying a gamma distribution func-
tion in accordance with WMO (2012) and Bloomfield and 
Marchant (2013).

VCI = 100 × NDVI − NDVImin

NDVImax − NDVImin
� (1)

Where, VCI represents the Vegetation Condition Index, and 
NDVI is the seasonal average of smoothed biweekly NDVI 
values. NDVImax and NDVImin represent the multi-year 
absolute maximum and minimum NDVI, respectively.

BT = (LST × SF) − 273.15� (2)

Where, BT is the seasonal average of the weekly smoothed 
brightness temperature (°C), BTmax is the multi-year abso-
lute maximum BT, and BTmin is the multi-year absolute 
minimum BT. LST denotes land surface temperature in 
Kelvin, the scaling factor (SF) is set to 0.02 for MODIS 
MOD09A1 V6.

TCI = 100 × BTmax − BT
BTmax − BTmin

� (3)

Table 2  Categorization of different drought intensity levels using three 
indicators: meteorological drought (Standardized precipitation index 
– SPI), agricultural drought (Vegetation health index – VHI), and the 
composite advance drought response index (ADRI)
Types of Drought 
Events

Meteorological 
Drought (SPI)

Agricultural 
Drought 
(VHI)

Advanced 
Drought 
Response 
Index (ADRI)

Extreme Drought Below − 2.0 Below 10, Below 10,
Severe Drought −2.1 to − 1.50 10.1–20 10.01–20
Moderate Drought <−1.51 to − 1.0 20.1–30 20.1–30
Mild Drought < −1.0 to 0 30.1–40 30.1–40
No Drought 0 Above 40 Above 40 Above

Fig. 2  The experimental design of 
the research. Here, SMAP is Soil 
Moisture Active Passive, TRMM 
is Tropical Rainfall Measuring 
Mission, GPM is Global Precipi-
tation Measurement, MODIS is 
Moderate Resolution Imaging 
Spectroradiometer, NDVI is the 
Normalized Difference Vegetation 
Index, NDWI is the Normalized 
Difference Water Index, GPP is 
Gross Primary Productivity, LST 
is land surface temperature, ET 
is evapotranspiration, WUE is 
water-use efficiency, VCI is the 
Vegetation Condition Index, TCI is 
the Temperature Condition Index, 
SCI is the Soil Condition Index, 
PCI is the Precipitation Condi-
tion Index, VHI is the Vegetation 
Health Index, SPI is the Standard-
ized Precipitation Index, and ADRI 
is the Advanced Drought Response 
Index
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SPI = Xij − Xim

δ
� (5)

where Xij is the seasonal rainfall, Xim  is the long-term 
seasonal mean, and δ  is the standard deviation of Xim .

2.6  Estimation of Advance Drought Response Index

In this study, we utilized the ADRI to analyze climatic 
responses to drought conditions, integrating remote sens-
ing-based soil moisture, precipitation, vegetation health, 
and temperature condition data. The ADRI is composed of 
the VCI, TCI, Precipitation Condition Index (PCI), and Soil 
Condition Index (SCI) (Kogan 1995; USDA-NRCS 2003; 
Duet al. 2013; Zeng et al. 2023). ADRI values near 0 indi-
cate extreme drought conditions characterized by stressed 
vegetation, low precipitation, and elevated temperatures, 
while values approaching 100 represent normal conditions 
with healthy vegetation, sufficient precipitation, and favor-
able temperatures (Kogan 1995). The VCI is derived from 
remotely sensed vegetation data, while the TCI, PCI, and 
SCI are calculated based on temperature, precipitation, and 
soil moisture observations, respectively, as described by the 
following equations (Kogan 1995; WMO 2012; Bloomfield 
and Marchant 2013; Singh et al. 2022).

Fig. 3  Principal Component Analysis (PCA) of climate data and water 
balance. LST represents Land Surface Temperature, P denotes the 
monthly mean precipitation, while the other variables include Soil 
Moisture (SM) and Evapotranspiration (ET)

 

ADRI =
[
L*VCI*

{
c + 1

L * (VCI + TCI + PCI + SCI + C)
* (TCI + PCI + SCI)

}]
� (6)

PCI = 100*
(Pmax − Pmin)
(Pmax − Pmin) � (7)

SCI = 100*
(SM − SMmin)

(SMmax − SMmin) � (8)

Where, ADRI represents the advanced drought response 
index, L is the normalization factor (set to 0.25) to ensure 
the output value falls within the expected range, and c is a 
constant (set to 0.01) (Singh et al. 2022). The normalization 
factor L, set at 0.25, is used to scale the ADRI values so they 
remain within a standardized and interpretable range, facili-
tating consistent comparison across different datasets and 
time periods (Singh et al. 2022). This value helps balance 
sensitivity and stability in the index, avoiding exaggerated 
fluctuations caused by extreme environmental changes. The 
constant c, set to 0.01, serves as a small offset to prevent 
division by zero or undefined values during calculations, 
ensuring numerical stability especially when observed 
variables approach their minimum or maximum limits. 
Together, L and ccc enhance the robustness and reliability 
of the ADRI by maintaining consistent output and avoiding 

computational errors. VCI denotes the Vegetation Condition 
Index, TCI represents the Temperature Condition Index, and 
PCI stands for the Precipitation Condition Index. P is pre-
cipitation, with Pmin and Pmax as the minimum and maxi-
mum precipitation values observed over the study period. 
SCI is the Soil Condition Index, where SM represents soil 
moisture, with SMmin and SMmax indicating the minimum 
and maximum soil moisture values during the study period. 
A detailed summary of the different drought index catego-
ries and their representations is presented in Table 2.

2.7  Water-Use Efficiency (WUE)

Water-use efficiency (WUE) is a critical metric for assess-
ing ecosystem responses to drought stress across different 
severities and vegetation types (Wilhite 2016; Hussain et 
al. 2022). WUE measures the amount of carbon assimilated 
into biomass per unit of water used by vegetation (Hatfield 
and Dold 2019). At the ecosystem level, WUE is a valuable 
ecological indicator, capturing the interaction between car-
bon and water balances. It is defined as the ratio of carbon 
sequestration to water lost through processes like photosyn-
thesis and transpiration. In this study, we utilized Gross Pri-
mary Productivity (GPP) and evapotranspiration (ET) data 
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3  Results

3.1  Seasonal Climate Patterns

Meteorological variables, including temperature LST, were 
analyzed using satellite data from MODIS, TRMM, GPM, 
and SMAP over the period 2002–2022 (Figs. 4 and 5). The 
monthly average LST during this period was 27.27 ± 2.3 °C. 
The highest monthly LST was observed in April 2014 at 
32.5 °C, while the lowest was recorded in January 2011 at 
21.44 °C. Seasonal temperature fluctuations followed typi-
cal regional patterns, with peak LST in April and May, aver-
aging 29.85 ± 1.05 °C and 29.49 ± 1.13 °C, respectively, and 
the lowest temperatures in December (23.75 ± 0.59 °C) and 
January (22.6 ± 0.68 °C) (Fig. 4a).

In 2022, the yearly average soil moisture for Bangladesh 
was 0.1520 kg/m², which is above the long-term average of 
0.1358  kg/m², reflecting wetter conditions (Fig.  4.b). The 
soil moisture pattern shows significant seasonality, with 
the lowest levels recorded in January (0.0609  kg/m²) and 
December (0.0584 kg/m²), marking the dry season. Moisture 
levels increase in April (0.0976 kg/m²) as the pre-monsoon 
rains start and peak in July (0.2155 kg/m²), reflecting the 
monsoon’s peak rainfall. The post-monsoon months show 
a decline in soil moisture, with September at 0.2119 kg/m² 
and further drops in October (0.1814 kg/m²) and Novem-
ber (0.1085 kg/m²). This seasonal variation emphasizes the 
significant role of the monsoon in replenishing soil mois-
ture and highlights the need for effective water manage-
ment strategies during dry months (Islam et al. 2024). Dry 
years, such as 2006 and 2018, show declining soil moisture, 
indicating potential challenges for agriculture and ecosys-
tem stability. Integrating satellite-based climate monitoring 
with localized weather data can improve drought and flood 

from the MODIS dataset (Das et al. 2023; Du et al. 2024). A 
comparative analysis of WUE was conducted across various 
drought indices, and temporal trends in WUE were analyzed 
using Eq. 9. Statistical analyses were performed to calculate 
and compare correlations between drought occurrences and 
WUE across different drought types.

WUE = GPP
ET

� (9)

where, WUE is water-use efficiency (g C m⁻² mm⁻¹), GPP is 
the Gross Primary Productivity (g C m−2) and ET is evapo-
transpiration retrieved from MODIS satellite data.

2.8  Statistical Analysis

A two-dimensional principal component analysis (PCA) 
was performed to assess the quality and variability of cli-
matic data, using monthly mean values from 2002 to 2022 
to identify dominant patterns and potential inconsistencies 
(Jollife, and Cadima, 2016); Hussain et al. 2024). The PCA 
results were visualized in a biplot, where the first princi-
pal component (PC1) explained 66.62% of the variance, 
while the second principal component (PC2) accounted for 
20.55%, together capturing 83.17% of the total variation 
(Fig. 3).

To further investigate the relationships between drought 
and key climatic factors, a multiple linear regression model 
was used. In this model, drought indices served as the 
response variable, while climatic variables such as tempera-
ture (LST), soil moisture, and precipitation acted as predic-
tors. The multiple linear regression model is represented by 
Eq. (10) (Shewhart et al. 2003; Kutner et al. 2004). Addi-
tionally, the correlation coefficient for individual variables 
was calculated using Eq. (11).

Yi = β 0 + β 1Xi1 + β 2Xi2 + · · · + β pXip + ϵ i, i = 1, · · · , n� (10)

R2 =
∑ n

i=1(y1 − x1)2

∑ n
i=1(y1 − x1)2 � (11)

Where n is the number of observations, yi is the ith response, 
is the response variable, and 1, 2, …, Xi1, Xi2​, …, Xip​ are 
the predictor variables. 0 is the intercept, and 1, 2, …, β1, 
β2, …, βp are the coefficients that indicate the influence 
of each predictor on . represents the error term, capturing 
the difference between observed and predicted values. The 
model estimates these coefficients to minimize the error 
across all observations.

forecasting, aiding sustainable land and water management 
in Bangladesh.

Evapotranspiration (ET) patterns, derived from 
MODIS data, revealed the monthly average ET rate of 
2.12 ± 0.81  mm d−1, with a peak of 2.35  mm d−1 in 2020 
and a low of 1.93 mm d−1 in 2012. ET showed distinct sea-
sonal patterns, with October reaching the highest monthly 
ET at 3.33 mm d−1, attributed to high post-monsoon radia-
tive energy and sufficient soil moisture. In contrast, the low-
est ET levels were in January (1.15 mm d−1) and February 
(1.11 mm d−1), coinciding with reduced daylight and radia-
tive energy (Fig. 5c). Surface-level soil moisture across the 
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(Fig. 5). The highest annual precipitation occurred in 2017 
(2823 mm) and 2022 (2825 mm), while the lowest was in 
2014 (1980 mm) and 2018 (1886 mm). The monsoon season 
(May–August) was the predominant contributor, account-
ing for 67% of the annual rainfall, with the remaining 33% 
distributed annually. July had the highest average monthly 
rainfall at 464 mm, while December (7 mm) and January 
(10 mm) were the driest months.

3.2  Agricultural Drought and Regional Variability

The annual calculation of the VHI from 2002 to 2022 
revealed consistent mild-to-moderate drought conditions 
in Bangladesh, with severe droughts recorded in 2006, 
2011, 2013, 2014, and predominantly in 2016 (Fig. 6). In 
2016 alone, extreme to severe drought conditions affected 
approximately 13,848  km²—about 13% of the country’s 
total agricultural land—posing serious threats to crop pro-
duction and rural livelihoods. Geomorphologically vul-
nerable regions such as the Char (riverbanks or islands) 
areas along riverbanks were significantly impacted due to 
their sandy, well-drained soil and limited irrigation infra-
structure, exacerbating water retention issues. Similarly, 
the northeastern Haor (wetland) regions faced pronounced 
drought during dry seasons (December to January), further 
intensifying their vulnerability due to their dependence on 
irrigation for rice cultivation (Baishakhy et al. 2023). The 
northwest and southeast zones of Bangladesh emerged as 
hotspots for agricultural drought intensity. The northwest-
ern Himalayan piedmont zone and southeastern Tertiary hill 
regions are particularly susceptible due to climatic factors 
and reduced river flow. Annual droughts in northern areas 
result from diminished river discharge in the Tista, Ganges, 

study area averaged 0.135 ± 0.06 kg m−2 or 13.5% per land 
unit, with peak moisture levels of 15.7% in 2017 and a min-
imum of 12% in 2006. Seasonal variations were evident, 
with soil moisture reaching maximum levels from July to 
September (0.215, 0.214, and 0.212 kg m−2, respectively), 
while the lowest levels occurred in December (0.05 kg m−2) 
and January (0.06 kg m−2), aligning closely with precipita-
tion trends (Fig. 4.b).

The study area’s long-term average annual precipitation 
was 2337 mm, with notable dry years (2006, 2009, 2013, 
2014, and 2018) characterized by precipitation anomalies 
below 10% of the average, and wet years (2002, 2004, 
2007, 2017, and 2022) exhibiting anomalies above 10% 

Fig. 5  Monthly cumulative precipitation (P) from 2002 to 2022. The 
yearly precipitation was calculated from the Tropical Rainfall Mea-
suring Mission (TRMM) and the Global Precipitation Measurement 
(GPM) dataset composited monthly. The height precipitation was 
recorded in 2002 (2646 mm), 2004 (2761 mm), 2007 (2731 mm), 2017 
(2823 mm), and 2022 (2825 mm); conversely, the lowest precipitation 
was recorded in 2006 (2062 mm), 2009 (2101 mm), 2013 (2098 mm), 
2014 (1980 mm), and 2018 (1986 mm)

 

Fig. 4  Monthly time series of mean 
(a) land surface temperature (LST) 
in °C, (b) soil moisture (SM) in 
kg m−2, and (c) evapotranspiration 
(ET) in mm and (d) monthly total 
precipitation (mm) from 2002 to 
2022
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Elevated LST during dry months further intensifies agri-
cultural drought by accelerating evapotranspiration and 
reducing soil moisture reserves. These thermal dynamics 
are especially detrimental in already water-stressed regions. 
The Temperature Condition Index (TCI), derived from sat-
ellite-based brightness temperatures, provides a valuable 
metric for quantifying this stress by comparing current LST 
to historical extremes. Low TCI values reflect higher ther-
mal stress and vegetation vulnerability, while higher TCI 
values suggest more favorable growing conditions. In this 
study, MODIS LST data (2002–2022) demonstrated a mod-
erate but statistically significant relationship with drought 
intensity (R² = 0.45, p < 0.0001), confirming TCI’s utility 
as a thermal proxy for vegetation health. Integrating such 
indices with climate projections can enhance the predictive 
capacity of drought monitoring systems, supporting effec-
tive agricultural planning under future climate uncertainty.

3.3  Spatiotemporal Meteorological Drought

Rainfall data from TRMM and GPM satellites were ana-
lyzed using geospatial and geostatistical methods to inves-
tigate the spatiotemporal variability of meteorological 
drought across Bangladesh from 2002 to 2022 (Fig. 7). The 
SPI highlighted mild drought events occurring almost annu-
ally, with extreme meteorological drought localized in 2006. 
Moderate-to-severe droughts were observed in 2006, 2013, 

and Brahmaputra rivers, often linked to upstream water 
dams. These regions, locally referred to as “Monga areas”, 
experience seasonal food insecurity and severe agricultural 
disruptions due to recurrent drought conditions.

The results highlight the persistent susceptibility of Ban-
gladesh to agricultural drought, which is driven by climatic, 
geomorphic, and hydrological factors. Haor and Char areas 
are particularly exposed to seasonal drought and flooding, 
illustrating a dual vulnerability that complicates agricultural 
planning and water resource management for government 
authorities (Rahman 2018; Sarkar et al. 2024). The reli-
ance on irrigation in the northeastern wetlands intensifies 
the impact of water scarcity during dry periods, while the 
northwest’s dependence on reduced river flows exacerbates 
drought severity in the Monga areas(Rahman, 2018); Das 
et al. 2023).

The interchange of upstream water management, geo-
morphic soil properties, and local climatic conditions cre-
ates a complex mixture of drought vulnerability across 
Bangladesh. Effective mitigation strategies should improve 
irrigation infrastructure, enhance water retention in sandy 
soils, and adopt sustainable water-sharing practices in trans-
boundary river basins (Alamgir et al. 2015; Al Mamun et al. 
2024). Targeted interventions in the northwest and southeast 
regions are critical to alleviating the impacts of recurring 
droughts and ensuring food security in these highly affected 
zones.

Fig. 6  Spatial distribution of 
annual agricultural drought 
from 2002 to 2022. The maps 
present the Vegetation Health 
Index (VHI) classified by five 
agricultural drought levels of 
< 10, 10–20, 20–30, 30–40, and 
> 40, considered extreme, severe, 
moderate, mild, and no drought 
intensity, respectively (Zeng et 
al. 2023)
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vulnerabilities requires integrating seasonal precipitation 
forecasts, improving irrigation infrastructure, and adopt-
ing drought-resilient agricultural practices to mitigate the 
adverse impacts of meteorological drought in the context of 
climate variability and change (Alamgir et al. 2015; (Rah-
man, 2018); Al Mamun et al. 2024).

3.4  Seasonal Assessment of Agricultural and 
Meteorological Drought Using Advanced Indices

The seasonal patterns of agricultural and meteorological 
droughts in the study area were analyzed using the ADRI, 
VHI, SPI, and WUE (Fig.  8). The pre-monsoon seasons 
(January to April) exhibited severe drought conditions, with 
the VHI and ADRI indicating significant stress in 2006, 
2009, 2014, and 2019. The SPI also showed moderate 
drought during these periods, reflecting the transition from 
dry to extremely hot conditions with minimal precipita-
tion. Conversely, the post-monsoon seasons (September to 
December) demonstrated more varied responses. While the 
VHI and ADRI highlighted favorable conditions in 2012, 
2017, and 2021 due to sufficient water availability for win-
ter Boro rice cultivation, the SPI indicated mild drought 
during this period, as precipitation levels were 64% lower 
than the monsoon average. The monsoon seasons (May to 
August) were mostly drought-free due to favorable rainfall 
and climatic conditions. The correlation between the VHI 

2014, and 2018, coinciding with annual precipitation defi-
cits compared to the average of 2337 mm. Precipitation lev-
els dropped to 2062 mm (2006), 2098 mm (2013), 1980 mm 
(2014), and 1986 mm (2018), exacerbating drought severity 
during these years. Spatially, droughts were concentrated in 
the northwest to northeast regions, where higher elevations 
and Char areas with poorly water-retentive soils heightened 
vulnerability. Seasonal precipitation distribution further 
illustrates the dominance of the monsoon season, with July 
contributing significantly to annual rainfall, while dry peri-
ods in December and January underscored the challenge of 
water scarcity during non-monsoon months (Shamsuddin et 
al. 2020).

The findings emphasize the critical role of spatiotempo-
ral variability in shaping meteorological drought patterns 
across Bangladesh. The dominance of droughts in the north-
west and northeast regions highlights the influence of geo-
morphic features, such as higher elevations and sandy soils 
in Char areas, which exacerbate water scarcity. The support 
of monsoon rainfall for stocking up water resources accen-
tuates the vulnerability of these regions during years with 
below-average precipitation, particularly during dry sea-
sons. The seasonal imbalance in rainfall distribution, with 
significant rainfall concentrated in July and prolonged dry 
periods during winter months, creates challenges for sus-
tainable water management and agricultural planning (Al 
Shoumik et al. 2023; Sarkar et al. 2024). Addressing these 

Fig. 7  Spatial distribution of 
meteorological drought in 
Bangladesh. The maps show the 
Standardized Precipitation Index 
(SPI) classified by five categories 
of meteorological drought level: 
(i) < − 2.0, (ii) < − 1.5, (iii) < − 1.0, 
(iv) < 0, and (v) > 0, considered as 
extreme, severe, moderate, mild, 
and no drought intensity, respec-
tively (Gupta et al. 2022)

 

1 3



Assessing the Impact of Long-Term Drought on Agriculture in Bangladesh Using Multisource Remote Sensing…

correlation between precipitation and evapotranspiration 
(R² = −0.44) challenges common assumptions. During 
heavy rainfall, lower temperatures and reduced solar radia-
tion may suppress evapotranspiration, despite water avail-
ability. This finding has implications for climate projections 
where increased rainfall may not equate to increased mois-
ture stress relief, especially if thermal dynamics counteract 
expected gains.

Another notable result is the negative relationship 
between vegetation health and water use efficiency (WUE; 

and ADRI (R2 = 0.98, p < 0.001) demonstrated consistency 
in capturing agricultural drought dynamics, while ADRI’s 
NDVI-based approach highlighted the influence of vegeta-
tion health on drought assessments.

The variable interaction heatmap (Fig.  9.a) reveals 
expected and non-intuitive relationships among drought 
drivers. Strong positive correlations between soil moisture 
and vegetation health (R² = 0.85), and between precipitation 
and vegetation health (R² = 0.79), affirm that water availabil-
ity directly supports crop growth. Interestingly, the negative 

Fig. 9  (a) Correlation heatmap of climate variables, drought indices, 
and water balance. LST represents Land Surface Temperature, while 
the other variables include Soil Moisture (SM), Standardized Pre-
cipitation Index (SPI), Vegetation Health Index (VHI), Agricultural 
Drought Response Index (ADRI), Evapotranspiration (ET), and Water 

Use Efficiency (WUE). (b) Relationship between the remotely sensed 
SPI and the observed SPI (weather station-based) using data from the 
Bangladesh Meteorological Department (BMD). The analysis reveals 
a strong correlation, with an R² value of 0.94 and a highly significant 
p-value (< 0.0001)

 

Fig. 8  Time-series comparison of 
drought dynamics and water use 
efficiency (WUE) in the study 
area. Seasonal drought variations 
are shown through the Vegetation 
Health Index (a), Standardized Pre-
cipitation Index (b), and Agricul-
tural Drought Response Index (c), 
along with water-use efficiency (d). 
The pre-monsoon period (January 
to April) experiences significant 
drought stress, while the monsoon 
season generally alleviates drought 
conditions. In the post-monsoon 
period (September to December), 
the SPI indicates mild drought 
despite sufficient water for crops, 
and the VHI trends demonstrate 
agricultural recovery
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this adaptive response, where agricultural systems adjust to 
intensify water-use efficiency as drought severity increases 
(Hatfield and Dold 2019; Prodhan et al. 2020; Rahman et al. 
2023; Mamun et al. 2024). This relationship underscores the 
importance of WUE in drought resilience and provides valu-
able insights for sustainable water management practices.

These results emphasize the need for targeted interven-
tions, such as drought-resistant crops and precision irrigation 
techniques, to support agricultural systems in maintaining 
productivity under water-limited conditions. By integrating 
WUE into drought monitoring and management strategies, 
policymakers and agricultural stakeholders (small-scale and 
large-scale farmers) can enhance the resilience of farming 
practices to the challenges posed by climate variability and 
water stress (Srivastava et al. 2024; Morepje et al. 2024).

Moreover, the observed WUE dynamics have signifi-
cant implications for ecosystem productivity and resource 
sustainability. Higher WUE during dry periods reflects an 
increased ratio of carbon uptake to water loss, which is essen-
tial for maintaining yields in Bangladesh’s monsoon-depen-
dent agricultural ecosystems. The balance between GPP and 
ET—especially during transitional periods—is influenced 
by both climatic drivers (e.g., solar radiation, temperature) 
and soil moisture conditions, all of which show clear sea-
sonal variability. During the monsoon, abundant rainfall 
and radiation promote higher ET and photosynthetic rates, 
while in winter, reduced solar input and lower temperatures 
constrain ET and plant activity. Importantly, the interaction 
between soil moisture, precipitation, and LST reinforces the 
importance of integrated climate–water–carbon modeling 
to guide drought adaptation. Soil moisture patterns closely 
follow precipitation regimes, governing both ET and veg-
etation stress levels. These seasonal couplings indicate that 
enhancing WUE through informed irrigation practices and 
crop selection can significantly mitigate the adverse impacts 
of climate-induced drought on agriculture.

In summary, the strong responsiveness of WUE to sea-
sonal drought patterns highlights its potential as both an 
indicator and a tool for adaptation. Embedding WUE into 
national drought monitoring systems will support farmers 
and policymakers in developing targeted interventions to 
improve agricultural resilience, water efficiency, and long-
term food security under increasing climate stress (Ahmed 
et al. 2024; Srivastava et al. 2024; Morepje et al. 2024; Yang 
et al. 2024; Rambal et al. 2025).

3.6  Climatic Drivers on Drought Indices and 
Assessment

To assess the reliability and consistency of various drought 
indices and the use of water efficiency, we evaluated their 
association with the NDVI, a widely accepted proxy for 

R² = −0.81). This suggests that under drought stress, vegeta-
tion becomes more water-efficient, possibly as a physiologi-
cal response to conserve moisture. It also raises questions 
about the role of plant type, nutrient availability, and man-
agement practices in moderating these outcomes—fac-
tors that must be integrated into future drought models to 
enhance prediction accuracy.

The integration of SPI from weather station observations 
(Fig. 9.b) with satellite-derived SPI shows a strong agree-
ment (R² = 0.94, p < 0.0001), confirming the robustness 
of remote sensing approaches for drought tracking. This 
strengthens confidence in deploying these tools for early 
warning systems, particularly in data-scarce regions.

Importantly, the seasonal drought trends identified in this 
study align with climate change projections for Bangladesh, 
which predict increased dry season warming, inconsistent 
rainfall patterns, and longer drought durations. These trends 
underscore the urgent need for seasonally adaptive and 
region-specific drought mitigation strategies. Integrating 
multi-index approaches like SPI, VHI, and ADRI allows for 
more nuanced monitoring and informed decision-making. 
Future resilience planning should prioritize improved irriga-
tion infrastructure, adoption of drought-resilient crop variet-
ies, and integration of planning tools to reduce agricultural 
vulnerability under projected climate stress (Ahmed et al. 
2023; Alam et al. 2023; Fattah et al. 2023).

3.5  Water-Use Efficiency and Drought Adaptation in 
Agricultural Systems

WUE was derived from MODIS-based GPP and ET data, 
revealing an average WUE of 13.47  g C m−2 mm−1 over 
the study period. The highest WUE of 19.87 g C m−2 mm−1 
occurred during the pre-monsoon period of 2004, while the 
lowest, 7.11 g C m−2 mm−1, was observed in the monsoon 
season of 2002. This variability highlights the agricultural 
system’s adaptive response to seasonal water availability. 
During drought periods, particularly in pre-monsoon sea-
sons, WUE increased as ecosystems optimized their water 
usage under scarcity (McKee et al. 1993; Srivastava et al. 
2024). Significant negative correlations were identified 
between WUE and drought indices, with R2 values of 0.68, 
0.85, and 0.66 for the VHI, SPI, and ADRI, respectively, 
suggesting that higher drought severity is accompanied by 
enhanced water efficiency.

The outcomes demonstrate the critical role of WUE as a 
measure of agricultural adaptation to water scarcity. During 
drought conditions, the observed increase in WUE reflects 
the ecosystem’s capacity to optimize water use, mitigat-
ing the impacts of reduced water availability on produc-
tivity. The strong negative correlations between WUE and 
drought indices (VHI, SPI, and ADRI) further highlight 
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The multivariable linear regression analysis of meteo-
rological variables, including surface temperature, soil 
moisture, and precipitation, was performed to evaluate 
their impact on drought conditions over the study period 
(Table  3). This model captures the relationship between 
climatic variables and drought indices, incorporating key 
indicators such as the number of observations (N), degrees 
of freedom (DF), root mean square error (RMSE), and coef-
ficient of determination (R2), which provide insights into 
the variance contributed by both dependent and independent 
variables (Shewhart et al. 2003; Kutner et al. 2004). The 
results indicate strong correlations between drought indi-
ces and climatic variables, with statistically significant low 
p-values (< 0.0001).

The VHI exhibited a high correlation (R2 = 0.86), under-
scoring its sensitivity to vegetation health and drought 
conditions. Approximately 86% of the VHI variance is 
explained by climatic factors, with a standard error of 5.93 
and a highly significant (p < 0.0001). Similarly, the SPI 
demonstrated the highest correlation (R2 = 0.97), reflect-
ing a strong relationship between precipitation and drought 
severity, with about 97% of the SPI variance explained by 
climatic conditions. The ADRI showed a moderately sig-
nificant correlation (R2 = 0.63;p < 0.0001), with 63% of its 
variance attributed to climatic factors and a standard error 
of 6.98.

Table 4 provides the model results examining associations 
between drought indices (VHI, SPI, and ADRI) and climatic 
variables (LST, soil moisture, and precipitation). For the 

vegetation health and drought stress (Fig.  10). All corre-
lations were statistically significant (P < 0.0001), indicat-
ing strong and meaningful relationships with vegetation 
conditions.

Among the indices, the ADRI showed the highest cor-
relation with NDVI (R2 = 0.83), highlighting its strong sen-
sitivity to vegetation stress. The SPI also demonstrated a 
strong correlation (R2 = 0.70), confirming its effectiveness 
in capturing precipitation-driven vegetation responses. The 
VHI showed a moderate correlation (R2 = 0.57), likely influ-
enced by its combined use of thermal and vegetation data.

Water Use Efficiency (WUE), while moderately corre-
lated with NDVI (R² = 0.39), reflects longer-term ecosys-
tem productivity and physiological adaptation rather than 
immediate vegetation stress. These results suggest that 
ADRI and SPI are most suitable for near-real-time moni-
toring of agricultural drought in regions where vegetation 
rapidly responds to water availability.

Table 3  The correlations between the different drought indices and 
Climatic variables. The strong correlation coefficient was observed 
with the p-values of < 0.0001. The key indicators of the multivariable 
linear regression model include the number of observations (N), error 
degrees of freedom (DF), root mean square error (RMSE), and correla-
tion coefficient (R2), which quantify the contribution of variance in the 
dependent variable explained by the independent variables
Index N DF RMSE R2

VHI 252 248 5.93 0.86
SPI 252 248 0.18 0.97
ADRI 252 248 6.98 0.63

Fig. 10  The relationship between 
Normalized Difference Vegetation 
Index (NDVI) and various drought 
indices. Panel (a) illustrates the 
relationship between NDVI and 
Agricultural Drought Response 
Index (ADRI), indicating veg-
etation response to agricultural 
drought. Panel (b) shows the con-
nection between NDVI and Vegeta-
tion Health Index (VHI), reflecting 
vegetation health under thermal 
and moisture stress. Panel (c) 
presents the association between 
NDVI and Standardized Precipita-
tion Index (SPI), linking vegetation 
activity to precipitation anomalies. 
Panel (d) displays the relationship 
between NDVI and Water Use Effi-
ciency (WUE), highlighting how 
efficiently vegetation uses water in 
relation to greenness

 

1 3



N. Hussain et al.

The multivariable regression analysis reveals intricate 
relationships between climatic factors and drought indices, 
emphasizing the strong explanatory power of the SPI (R² = 
0.97) and VHI (R² = 0.86) in modeling drought dynamics. 
These findings highlight the effectiveness of multivariable 
regression models in capturing drought patterns, offering 
valuable insights into the primary drivers of drought. This 
understanding aids in the development of better prepared-
ness and adaptation strategies, ultimately helping to reduce 
drought impacts on socioeconomic and environmental 
systems and enhancing resilience in drought-prone areas 
(Sarkar et al. 2024; Hasan et al. 2024).

The correlation plot (Fig. 9.b) emphasizes a strong agree-
ment between remote sensing-derived SPI and weather 
station-based SPI, with an R² value of 0.94 (P < 0.0001), 
indicating that satellite-based estimates effectively capture 
precipitation anomalies. This relationship suggests that 
remote sensing data can reliably substitute in-situ observa-
tions, reducing reliance on sparse weather station networks 
for drought monitoring. However, slight deviations from 
the regression line may be attributed to localized precipi-
tation variations or sensor limitations in detecting small-
scale heterogeneity. Despite these minor discrepancies, 
the high correlation coefficient reinforces the potential of 
remote sensing for providing continuous spatial and tempo-
ral drought monitoring, positioning it as a valuable tool for 
regional climate analysis and water resource management.

The regression analysis further demonstrates that precip-
itation is the dominant factor influencing drought variabil-
ity, shown by its strong correlation with the SPI and VHI. 
Surface temperature also plays a significant role in vegeta-
tion health, highlighting the importance of adaptive strate-
gies to mitigate the impacts of heat stress on ecosystems. 
These results underline the value of multivariable models 
in identifying the primary climatic drivers of drought, sup-
porting the formulation of targeted water management and 
agricultural resilience strategies (Hussain et al. 2021; Das et 
al. 2023; Hasan et al. 2024).

4   Discussion

4.1  The Climatic Condition

The seasonal climate patterns and soil variability in Bangla-
desh highlight the complex interactions between tempera-
ture, precipitation, ET, and soil moisture (Fattah e al., 2023). 
LST peak during the monsoon transition in April and May, 
with cooler conditions in December and January, reflecting 
monsoonal dynamics (Ahmed et al. 2023; Dastour et al. 
2025). Precipitation follows a distinct pattern, with alternat-
ing wet and dry years, and the monsoon accounts for 67% 

VHI, the intercept was 146.68, with coefficients of − 3.19 for 
LST, − 8.71 for soil moisture, and 0.06 for precipitation. The 
SPI intercepted − 0.90, with coefficients of − 0.004 for LST, 
− 0.19 for soil moisture, and 0.005 for precipitation. For the 
ADRI, the intercept was 25.27, with coefficients of 0.41 for 
LST, 48.16 for soil moisture, and − 0.06 for precipitation. 
The VHI demonstrated a strong negative association with 
LST (estimate = − 3.19, p < 0.0001), indicating that higher 
temperatures contribute to lower vegetation health. A mod-
erate positive association was found between the VHI and 
precipitation (estimate = 0.06, p < 0.0001), suggesting that 
increased precipitation supports vegetation growth, mitigat-
ing drought impacts. Soil moisture, however, showed a non-
significant association with the VHI (p = 0.44), indicating 
that other factors may influence vegetation health beyond 
soil moisture levels. The SPI exhibited a positive correlation 
with precipitation (estimate = 0.005, p < 0.0001), linking 
higher precipitation with reduced drought severity. Weak 
associations were found between the SPI and both LST and 
soil moisture, affirming precipitation’s primary role in SPI 
dynamics. The ADRI displayed moderate associations with 
LST (estimate = 0.41, p = 0.04) and a strong relationship 
with soil moisture (estimate = 48.16, p = 0.0004), suggesting 
that higher temperatures and soil moisture variations play a 
role in drought severity. Additionally, the correlation heat-
map illustrates the relationships among key environmental 
factors, including LST, precipitation, soil moisture, water 
and energy fluxes (ET, WUE), and various drought indices 
(Fig. 9.a).

Table 4  Multivariable linear regression analysis of drought indices 
and specific Climatic factors for each drought index (VHI, SPI, and 
ADRI) and Climatic variable (LST, soil moisture, and precipitation) 
by statistical indicators including intercept, estimate, standard error, 
t-statistics, and p-value
VHI

Estimate Standard Error tStat p Value
Intercept 146.68 4.54 32.28 < 0.0001
LST −3.19 0.17 −18.62 < 0.0001
Soil Moisture −8.71 11.41 −0.76 0.44
Precipitation 0.06 0.001 −14.37 < 0.0001
SPI

Estimate Standard Error tStat pValue
Intercept −0.90 0.13 −6.52 < 0.0001
LST −0.004 0.005 −0.76983 0.44
Soil Moisture −0.19 0.34 −0.55134 0.58
Precipitation 0.005 0.0001 45.53 < 0.0001
ADRI

Estimate Standard Error tStat p Value
Intercept 25.27 5.35 4.72 < 0.0001
LST 0.41 0.20 2.05 0.04
Soil Moisture 48.16 13.44 3.58 0.0004
Precipitation −0.06 0.004 −13.85 < 0.0001
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of the annual rainfall. Years with significant anomalies, 
like 2014 and 2018 (drier), and 2017 and 2022 (wetter), 
impact agriculture, water availability, and flooding risks. 
These findings underscore the importance of adaptive water 
resource management to cope with climate variability (Rah-
man 2018; Sarkar et al. 2024).

ET and soil moisture trends further illustrate the region’s 
climatic sensitivity. ET rates peak in October, driven by 
post-monsoon energy and soil moisture, while they dip in 
January and February, reflecting seasonal energy constraints. 
Soil moisture closely tracks precipitation trends, peaking 
during the monsoon and declining during dry months (Han 
et al. 2021; Sharma et al. 2022). These patterns emphasize 
the need for adaptive land and water management strategies 
to mitigate drought impacts, prevent waterlogging, and opti-
mize irrigation scheduling (Selvaraju, and Baas, 2007); Dey 
et al. 2017). The findings provide a foundation for designing 
resilient agricultural practices and water resource manage-
ment plans, which are critical for maintaining ecosystem 
stability in the face of climate variability (Iqbal et al. 2025).

4.2  Comparative Analysis of Different Drought 
Dynamics

This study expands upon existing research on drought 
dynamics in Bangladesh by confirming the seasonal and 
spatial variability of droughts, particularly in the Char and 
northwestern regions, where pre-monsoon and dry winter 
conditions contribute to heightened drought risk (Ahmed 
et al. 2021). Consistent with earlier studies (e.g., Ahmed 
2006; Mojid 2020; Islam and Nursey-Bray 2017), our find-
ings validate the role of monsoon variability, limited soil 
moisture retention, and upstream water regulation in deter-
mining regional drought severity. By integrating remote 
sensing-derived indices such as VHI, SPI, ADRI, and WUE, 
this study advances previous work by contributing a more 
spatially detailed and ecologically responsive assessment 
of drought impacts. Our results not only align with station-
based observations but also provide new insights into adap-
tive ecosystem responses and multi-seasonal drought risks. 
The comparative analysis presented in Table  5 highlights 
methodological improvements and supports the integration 
of satellite-based tools into climate-resilient agriculture eco-
system planning and localized drought monitoring.

Agricultural drought, caused by soil moisture deficits and 
vegetation stress, is most severe in regions such as Char 
and Haor, where poor water retention and dependence on 
seasonal rainfall exacerbate the impact of droughts. Mete-
orological drought, driven by rainfall shortages, follows 
broader climatic trends, with the northwestern and north-
eastern regions experiencing frequent dry spells due to 
reduced river discharge. Notably, the Monga region in the 

Table 5  Comparative overview of major drought studies in bangla-
desh, including the present study, summarizing methods, study peri-
ods, and key findings relevant to spatial-temporal drought patterns, 
seasonal variability, and climate change impacts
Study Reference Study 

Period
Method/
Data 
Used

Key Findings

Assessment 
of drought 
using SPI

Shahid and 
Behrawan 
(2008)

1960–
2002

SPI/
Rainfall 
Data

Identified increas-
ing drought 
frequency 
in northwest 
Bangladesh

Spatiotempo-
ral drought 
analysis

Shahid 
(2010)

1961–
1992

SPI/GIS, 
Rainfall 
Records

Spatial variability 
in drought; west-
ern and northern 
regions are most 
vulnerable

Meteorologi-
cal drought 
pattern

Alamgir et 
al. (2015)

1961–
2010

SPI/
Rainfall 
Data

Droughts for pre-
monsoon in north-
west, monsoon 
in northwest and 
winter in west.

Hydro-
climatolog-
ical drought 
analysis

Rahaman et 
al. (2016)

1964–
2013

Trend 
Analy-
sis/
Climate 
Data

Trans-boundary 
water flow 
limits surface 
water, triggering 
drought.

Spatiotempo-
ral drought 
analysis

Kamruzza-
man et al. 
(2022)

1980–
2018

SPI, 
SPEI/
Rainfall 
Data

Temperature 
affect precipita-
tion; drought 
intensity rises in 
northwest.

Drought 
monitoring

Das et al. 
(2023)

1990–
2020

GIS/
NDVI, 
NDWI, 
LULC

NDVI effective 
for agricultural 
drought; north-
west regions are 
vulnerable

Climate 
change and 
drought

Rahman et 
al. (2023)

1991–
2020

Neural 
Net-
work/
Meteo-
rological 
Data

Meteorological 
data and Neural 
Network pre-
dicted sea-
sonal drought 
susceptibility.

Meteorologi-
cal drought 
assessment

Sadiq et al. 
(2023)

2010–
2019

NDVI, 
NDWI, 
GIS/
MODIS 
Data

Spatial variability 
in drought; west-
ern and northern 
regions are most 
vulnerable.

Agricultural 
Droughts

Mamun et 
al. (2024)

2000–
2020

VHI/
NDVI, 
LST

Northern region, 
especially in 
winter, is more 
drought prone.

Climate 
Change and 
Drought 
linkage

Present 
Study ( 
Hussain 
et al., al., 
2025 ))

2002–
2022

SPI, 
VHI, 
ADRI, 
WUE/
Satel-
lite and 
Station 
climate 
data

Droughts are 
becoming more 
severe with 
changing climate; 
monsoon vari-
ability key driver 
for drought 
resilience.
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Furthermore, WUE plays a critical role in building agricul-
tural resilience. MODIS-based GPP and ET data reveal an 
average WUE of 13.47 g C m − 2 mm − 1, with the highest 
recorded during the pre-monsoon drought of 2004 (19.87 g 
C m − 2  mm − 1) and the lowest during the monsoon of 
2002 (7.11 g C m − 2 mm − 1). Strong negative correlations 
were found between WUE and drought indices (R² = 0.68 
for VHI, 0.85 for SPI, and 0.66 for ADRI), showing that as 
drought severity increases, crops adjust their water use to 
maintain productivity. Strengthening early warning systems, 
improving irrigation infrastructure, adopting drought-resis-
tant crops, and implementing adaptive water management 
strategies are essential for mitigating drought impacts and 
ensuring long-term food security and climate resilience in 
Bangladesh (Islam et al., 2017; Sarkar et al. 2024).

The observed patterns—frequent mild droughts inter-
spersed with episodic moderate-to-severe events—are 
consistent with long-term shifts in temperature and rain-
fall regimes. Projected climate scenarios for Bangla-
desh indicate rising average land surface temperatures 
(27.27 ± 2.3 °C), with summer extremes exceeding 32.5 °C, 
and a trend toward erratic monsoon behavior, prolonged dry 
spells, and shifting rainfall distributions. In severe drought 
years like 2014, total annual rainfall dropped well below the 
long-term average (2337 mm to 1980 mm), compounding 
moisture stress due to increased evapotranspiration rates.

These climate-driven changes are particularly harmful to 
regions like the northwest, where poor water retention exac-
erbates drought impacts. Declining precipitation and rising 
heat will likely increase drought frequency, intensity, and 
duration—placing significant strain on ecosystem services, 
agricultural productivity, and food security (Ashik-Ur-
Rahman et al., 2024; Rahman et al. 2024). These findings 
emphasize the urgent need for adaptive drought risk man-
agement that incorporates both current observations and 
future climate projections.

4.3  Implications for Ecosystem and Resource 
Management

This study highlights the significant role of seasonal cli-
mate patterns and soil variability in shaping Bangladesh’s 
ecosystems and agricultural systems. Climatic factors such 
as temperature, precipitation, evapotranspiration, and soil 
moisture show considerable seasonal and inter-annual vari-
ations. Peak temperatures occur in April and May, with the 
monsoon contributing to 67% of annual rainfall, creating 
marked seasonal imbalances in water availability. Addi-
tionally, evapotranspiration rates peak after the monsoon, 
intensifying pressure on water resources during dry periods 
(Sultana et al. 2023). Extreme weather events, such as the 
dry years of 2006, 2014 and 2018 and the wet years of 2017 

northwest suffers from severe food insecurity during pro-
longed droughts, exacerbated by upstream water regulation 
affecting the Teesta and Brahmaputra rivers (Selvaraju and 
Baas 2007; Aziz et al. 2022). This study found a strong cor-
relation between remotely sensed and weather station-based 
SPI, with an R² value of 0.94 (p < 0.0001), confirming the 
reliability of satellite-based drought monitoring across Ban-
gladesh (Prodhan et al. 2020; Sadiq et al. 2023).

Seasonal drought patterns across Bangladesh reveal 
critical vulnerabilities, especially during the pre-monsoon 
period (January–April). This period is marked by extreme 
water scarcity, high temperatures, and declining soil mois-
ture, particularly in rain-fed agricultural zones (Sultana et 
al. 2023; Mamun et al. 2024). The northeastern Haor wet-
lands are especially vulnerable to early-season water short-
ages, disrupting Boro rice cultivation. During the monsoon 
season (May–August), rainfall replenishes water resources 
and alleviates drought stress, but floodplain areas often face 
excessive rainfall and flash floods, creating additional chal-
lenges for agriculture. In the post-monsoon period (Sep-
tember–December), while initial water availability supports 
crop growth, declining rainfall leads to localized drought 
stress, particularly in the sandy, well-drained soils of Char 
lands (Dey et al. 2017; Islam et al. 2020; Sultana et al. 2023; 
Rahman et al. 2025). These seasonal patterns highlight 
the need for region-specific water management strategies, 
including improved irrigation infrastructure, sustainable 
transboundary water agreements, and strategic reservoir 
management to better manage seasonal fluctuations and 
mitigate the effects of drought (Islam et al., 2017).

The analysis emphasizes the significant impact of sea-
sonal patterns on agricultural and meteorological drought 
dynamics in Bangladesh. The pre-monsoon period stands 
out as the most vulnerable, with severe drought condi-
tions due to minimal precipitation and high temperatures, 
severely affecting agricultural ecosystems and water avail-
ability (Sultana et al. 2023; Sarkar et al. 2024). On the other 
hand, the monsoon season plays a crucial role in replenish-
ing developing the drought conditions by water availability 
and supporting crop growth. However, drought events have 
also been observed during the monsoon season in India, 
with studies highlighting evapotranspiration as a key fac-
tor, especially across large areas with diverse ecosystems 
(Kumar et al. 2013). This study identified significant annual 
findings based on SPI in 2006, 2013, 2014, and 2018, indi-
cating moderate to severe drought conditions (Fig. 7). These 
results are consistent with previously published studies as 
summarized in Table 5 (Rahman 2018; Sadiq et al. 2023; 
Sarkar et al. 2024). However, the post-monsoon period 
presents a mixed scenario, with sufficient water initially 
supporting agricultural activities, but declining precipita-
tion leading to mild drought stress, as indicated by the SPI. 
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policies in Bangladesh. The documented spatial and sea-
sonal variability in drought patterns highlights the urgent 
need for regionally tailored adaptation strategies, particu-
larly in highly vulnerable areas such as the Char, Haor, 
and northwestern regions. Policymakers should prioritize 
investment in localized irrigation systems, scalable early 
warning tools based on satellite-derived drought indica-
tors, and finer-scale agroecological zoning that incorporates 
vegetation health, soil moisture, and socioeconomic vul-
nerability. Integrating high resolution climate data such as 
LST, NDVI, and WUE into planning frameworks will be 
essential for promoting sustainable crop planning, resource 
allocation, and risk reduction. These data-driven strategies 
not only improve real-time drought monitoring but also sup-
port nutritional stability, agricultural sustainability, and eco-
system resilience in the face of growing climate extremes. 
Most critically, empowering marginal and smallholder 
farmers through access to climate services, drought-resil-
ient technologies, and informed agricultural extension can 
reduce their vulnerability to environmental disruptions and 
contribute to broader economic stability and food security 
across Bangladesh’s climate-sensitive and emerging econ-
omy (Nayak et al. 2019; Morepje et al. 2024).

4.4  Limitations

Despite the strengths of this study, several limitations must 
be acknowledged. While satellite-derived indices provide 
valuable spatial and temporal coverage for drought monitor-
ing, the coarse resolution of some remote sensing datasets 
may limit the detection of localized drought events, particu-
larly in heterogeneous landscapes with varying topography, 
land use, and microclimates. Additionally, issues such as 
cloud cover, sensor calibration errors, and data discontinui-
ties can introduce uncertainties that affect the precision of 
drought severity assessments (Kogan, 1990). Another key 
limitation lies in the sparse distribution and inconsistent 
temporal coverage of ground-based weather station data 
in Bangladesh, which can reduce the robustness of satel-
lite data validation. This is particularly problematic in cli-
matically diverse zones, where localized meteorological 
observations are critical for calibrating remote sensing 
outputs. Moreover, validation efforts in this study focused 
primarily on temperature and precipitation; future research 
should expand this scope to include land surface tempera-
ture (LST), NDVI, and other vegetation-based indices, 
which can suggest deeper insight into ecological responses 
to drought stress.

To address these limitations, future studies should pur-
sue higher-resolution remote sensing datasets, integrate 
multi-source data fusion techniques, and strengthen ground 
validation networks. Enhanced agroecological zoning and 

and 2022, underscore Bangladesh’s vulnerability to climate 
extremes, calling for adaptive, climate-resilient strategies 
in agriculture and water management (Prodhan et al. 2020; 
Sadiq et al. 2023).

The strong correlation between soil moisture and precipi-
tation highlights the critical need for adaptive land and water 
management strategies. Soil moisture levels peak during the 
monsoon season but decline sharply during the dry months, 
emphasizing the necessity of efficient irrigation, water con-
servation, and measures to prevent waterlogging (Prodhan et 
al. 2020; Sultana et al. 2023). These findings are crucial for 
shaping national policies that promote resilient agricultural 
practices and sustainable water management. Although pre-
cision agriculture offers an effective approach to optimizing 
resource use, its adoption remains limited, especially among 
small- and medium-scale farmers due to technological and 
financial constraints. At the local and community levels, 
agricultural officers play a crucial role in mitigating these 
challenges by guiding farmers in crop selection, irrigation 
scheduling, and the adoption of drought-resistant practices 
(Miheretu and Yimer 2017). However, traditional weather 
station-based drought monitoring remains inadequate at 
finer spatial scales due to the limited availability of local-
ized meteorological data. This study demonstrates that 
remote sensing-based tools can address this gap by provid-
ing spatially continuous data, enabling more effective deci-
sion-making for local small- and medium-scale agricultural 
practices. Additionally, existing agroecological assessments 
require updates at finer scales to account for variations in 
land use and climate dynamics.

While neighboring countries like India have adopted 
integrated drought monitoring systems (Asrat and Simane 
2018; Shah and Mishra 2020), many still rely on broad scale 
agroecological zoning that lacks the granularity needed for 
effective local interventions. Bangladesh must move toward 
finer-resolution agroecological assessments, incorporating 
both climate variability and land use changes to enable more 
effective, place-based adaptation. This includes adapting 
crop calendars, water budgets, and agro-advisory systems 
to specific micro-regions, particularly those at high risk of 
seasonal drought intensification.

The integration of remote sensing data with agroeco-
logical assessments can provide deeper insights into how 
local agricultural systems respond to climate variability and 
drought patterns. Enhancing agroecological zoning at finer 
spatial resolutions will enable the development of region-
specific strategies, ultimately strengthening climate adap-
tation efforts, promoting sustainable agricultural practices, 
and preserving critical ecosystems across Bangladesh’s 
diverse landscapes (Nayak et al. 2019).

The findings of this study provide valuable insight for 
formulating drought-resilient and ecologically informed 
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ground-based measurements, although further refinement 
in data calibration and integration methods is necessary to 
improve accuracy and reliability.

Future research should integrate climate change projec-
tions to assess how shifting conditions influence drought 
severity, frequency, and distribution, providing insights into 
long-term trends and guiding adaptation strategies. Addi-
tionally, enhancing agroecological zoning at finer spatial 
scales with remote sensing data will improve understand-
ing of land use shifts and their impact on local agricultural 
systems and drought resilience. Furthermore, combining 
advanced remote sensing techniques with machine learning 
models could improve drought prediction and management. 
This research is crucial for influencing national policies 
focused on resilient agriculture and sustainable water man-
agement. By providing local farmers with expert guidance, 
they can make informed decisions on crop selection, irriga-
tion, and drought-resistant strategies.

Importantly, integrating satellite-derived drought indi-
ces and WUE into national adaptation frameworks can 
strengthen localized decision-making, empower marginal 
farmers, and contribute to long-term agricultural sustain-
ability and economic resilience across climate-exposed 
Bangladesh economy. The study offers valuable insights 
into climatic drivers and seasonal drought patterns, forming 
the basis for evidence-based policies, strategic water plan-
ning, and sustainable agricultural practices. These findings 
enable policymakers and researchers to enhance drought 
assessment models and implement targeted interventions, 
fostering resilience in Bangladesh and other drought-prone 
regions globally.
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more comprehensive datasets will improve the detection of 
spatial-temporal drought variability and enable the develop-
ment of more targeted, climate-resilient resource manage-
ment strategies designed to regional needs.

5  Conclusions

This study provides a comprehensive assessment of agricul-
tural and meteorological drought dynamics in Bangladesh 
from 2002 to 2022, employing advanced satellite data and 
analytical techniques. By integrating key drought indices 
(VHI, SPI, and ADRI) with climatic variables, this research 
highlights the spatiotemporal evolution of drought severity 
and its significant impacts on agricultural productivity. The 
findings reveal that mild-to-moderate drought conditions 
persisted throughout the study period, with severe events 
notably concentrated in 2006, 2011, 2013, 2014, and 2016. 
Vulnerable regions, such as Char areas, low-elevated Haor 
and the north-west region were disproportionately affected 
due to unfavorable soil properties and limited irrigation 
infrastructure. Additionally, the study reveals that increas-
ing drought severity, driven by climate variability, is closely 
linked to enhanced WUE as crops adapt to water-limited 
conditions. These findings highlight the critical role of WUE 
trends in shaping agricultural resilience and underscore the 
need to integrate drought and climate change considerations 
into sustainable water and crop management strategies.

The multivariate regression analysis underscores the 
critical role of surface temperature, soil moisture, and pre-
cipitation in shaping drought patterns, with the SPI and 
VHI demonstrating high explanatory power (R2 = 0.97 and 
R2 = 0.86, respectively). Seasonal analysis further highlights 
the importance of considering seasonal rainfall variability 
in drought preparedness, as dry pre-monsoon periods exac-
erbate water scarcity while monsoon seasons typically miti-
gate drought impacts. The integrated assessment method 
proposed in this study offers a valuable framework for 
monitoring drought in Bangladesh and developing region-
specific mitigation strategies, which can be adapted for use 
in other regions facing similar climatic and agricultural 
challenges.

This study encountered challenges in achieving consis-
tent spatial and temporal resolution across satellite data 
sources, partly due to the limited availability of ground 
station data for validation. While remote sensing facili-
tated continuous monitoring of key variables such as soil 
moisture, rainfall, and temperature, the inherent differences 
in sensor characteristics and resolution created difficulties 
in seamlessly integrating the data. Despite these limita-
tions, this study underscores the potential of multisource 
remote sensing to fill data gaps and complement traditional 
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